722 research outputs found

    The brokerage role of small states and territories in global corporate networks

    Get PDF
    Global economic activity is networked through cross‐national linkages between firm headquarters, branches, and subsidiaries. Brokerage emerges as a key territorial function of this network, with some places acting as gateways or intermediaries for flows of global knowledge, information, or trade. This function is particularly salient for small states and territories leveraging the benefits of borrowed size by offering global professional services, warehousing, logistics, shipping, and finance to wealthy nations or high net individuals. Nonetheless, to date our understanding of how small states and territories facilitate wealth accumulation is limited to broad concepts of their role as “gateways” or “brokers.” Drawing on a typology of brokerage and a network analysis applied to the ties between approximately 700,000 firm headquarter and subsidiary locations of 13 of the world's largest stock exchanges, we explore the brokerage role of small states and territories through case studies of Luxembourg, Singapore, Hong Kong, and Panama. Brokerage is found to play an important role in the economy of all four. We argue that each of these small states and territories is uniquely positioned as a broker in global corporate networks, but that this role differs according to geo‐economic and political positionality

    The role of tax havens and offshore financial centres in shaping corporate geographies: an industry sector perspective

    Get PDF
    This paper investigates the role of tax havens and offshore financial centres (THOFC) in the global economy. Network analysis of 24 industry sectors suggests that THOFC feature prominently in knowledge-intensive activities such as pharmaceuticals, biotechnology and semiconductors, and are least significant in industrial activities such as automobiles and consumer durables, and place-bound activities such as real estate and retailing. Contrasting with the notion that most THOFC are ‘rogue’ offshore territories, the most significant are either continental nation-states or British territorial dependencies. It is concluded that global firm networks often mimic the geographies of taxation more than actual production or consumption activities

    Factors underlying membrane potential-dependent and -independent fluorescence responses of potentiometric dyes in stressed cells: diS-C3(3) in yeast

    Get PDF
    AbstractThe redistribution fluorescent dye diS-C3(3) responds to yeast plasma membrane depolarisation or hyperpolarisation by Δψ-dependent outflow from or uptake into the cells, reflected in changes in the fluorescence maximum λmax and fluorescence intensity. Upon membrane permeabilisation the dye redistributes between the cell and the medium in a purely concentration-dependent manner, which gives rise to Δψ-independent fluorescence responses that may mimic Δψ-dependent blue or red shift in λmax. These λmax shifts after cell permeabilisation depend on probe and ion concentrations inside and outside the cells at the moment of permeabilisation and reflect (a) permeabilisation-induced Δψ collapse, (b) changing probe binding capacity of cell constituents (inverse to the ambient ionic strength) and (c) hampering of probe equilibration by the poorly permeable cell wall. At low external ion concentrations, cell permeabilisation causes ion outflow and probe influx (hyperpolarisation-like red shift in λmax) caused by an increase in the probe-binding capacity of the cell interior and, in the case of heat shock, protein denaturation unmasking additional probe-binding sites. At high external ion levels minimising net ion efflux and at high intracellular probe concentrations at the moment of permeabilisation, the Δψ collapse causes a blue λmax shift mimicking an apparent depolarisation

    Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming

    No full text
    Synaptic vesicles must be primed to fusion competence before they can fuse with the plasma membrane in response to increased intracellular Ca2+ levels. The presynaptic active zone protein Munc13-1 is essential for priming of glutamatergic synaptic vesicles in hippocampal neurons. However, a small subpopulation of synapses in any given glutamatergic nerve cell as well as all gamma-aminobutyratergic (GABAergic) synapses are largely independent of Munc13-1. We show here that Munc13-2, the only Muncl 3 isoform coexpressed with Munc13-1 in hippocampus, is responsible for vesicle priming in Munc13-1 independent hippocampal synapses. Neurons lacking both Munc13-1 and Munc13- 2 show neither evoked nor spontaneous release events, yet form normal numbers of synapses with typical ultrastructural features. Thus, the two Munc13 isoforms are completely redundant in GABAergic cells whereas glutamatergic neurons form two types of synapses, one of which is solely Munc13-1 dependent and lacks Munc13-2 whereas the other type employs Munc13-2 as priming factor. We conclude that Munc13-mediated vesicle priming is not a transmitter specific phenomenon but rather a general and essential feature of multiple fast neurotransmitter systems, and that synaptogenesis during development is not dependent on synaptic secretory activity

    Family Structure and Maternal Depressive Symptoms: A Cross-National Comparison of Australia, the United Kingdom, and the United States

    Get PDF
    The purpose of this study is to understand the relationship between family structure and maternal depressive symptoms (MDS) in Australia, the United Kingdom, and the United States. Family structures that involve transitions across life\u27s course, such as divorce, can alter access to resources and introduce new stressors into family systems. Using the stress process model, we examine the links between family structure, stress, resources, and MDS. Using nationally representative data from Australia, the United Kingdom, and the United States and cross-sectional models for each country, we find that family structure may influence MDS differently in the UK than it does in Australia or, especially, the US. Specifically, mothers in the UK who either enter or leave a marriage after the birth of their child experience increased levels of MDS compared with mothers who do not experience a similar transition. These findings demonstrate that the effects of family structure transitions across life\u27s course may vary according to the country context as well as to the mother\u27s access to resources and exposure to stress. Considering that the effects of family structure transitions are not universal, this indicates that greater attention should be paid to the country contexts families exist in and the effects that public policies and social safety nets can have on MDS

    Molecular architecture of Gαo and the structural basis for RGS16-mediated deactivation

    Get PDF
    Heterotrimeric G proteins relay extracellular cues from heptahelical transmembrane receptors to downstream effector molecules. Composed of an α subunit with intrinsic GTPase activity and a βγ heterodimer, the trimeric complex dissociates upon receptor-mediated nucleotide exchange on the α subunit, enabling each component to engage downstream effector targets for either activation or inhibition as dictated in a particular pathway. To mitigate excessive effector engagement and concomitant signal transmission, the Gα subunit's intrinsic activation timer (the rate of GTP hydrolysis) is regulated spatially and temporally by a class of GTPase accelerating proteins (GAPs) known as the regulator of G protein signaling (RGS) family. The array of G protein-coupled receptors, Gα subunits, RGS proteins and downstream effectors in mammalian systems is vast. Understanding the molecular determinants of specificity is critical for a comprehensive mapping of the G protein system. Here, we present the 2.9 Å crystal structure of the enigmatic, neuronal G protein Gαo in the GTP hydrolytic transition state, complexed with RGS16. Comparison with the 1.89 Å structure of apo-RGS16, also presented here, reveals plasticity upon Gαo binding, the determinants for GAP activity, and the structurally unique features of Gαo that likely distinguish it physiologically from other members of the larger Gαi family, affording insight to receptor, GAP and effector specificity

    Cross-continental emergence of Nannizziopsis barbatae disease may threaten wild Australian lizards

    Get PDF
    Members of the genus Nannizziopsis are emerging fungal pathogens of reptiles that have been documented as the cause of fatal mycoses in a wide range of reptiles in captivity. Cases of severe, proliferative dermatitis, debility and death have been detected in multiple free-living lizard species from locations across Australia, including a substantial outbreak among Eastern water dragons (Intellagama lesueurii) in Brisbane, Queensland. We investigated this disease in a subset of severely affected lizards and identified a clinically consistent syndrome characterized by hyperkeratosis, epidermal hyperplasia, dermal inflammation, necrosis, ulceration, and emaciation. Using a novel fungal isolation method, histopathology, and molecular techniques, we identified the etiologic agent as Nannizziopsis barbatae, a species reported only once previously from captive lizards in Australia. Here we report severe dermatomycosis caused by N. barbatae in five species of Australian lizard, representing the first cases of Nannizziopsis infection among free-living reptiles, globally. Further, we evaluate key pathogen and host characteristics that indicate N. barbatae-associated dermatomycosis may pose a concerning threat to Australian lizards

    Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment

    Get PDF
    The effects of heavy metals and phytoextraction practices on a soil microbial Community were studied during 12 months using a hyperaccumulating plant (Thlaspi caerulcseens) grown in an artificially contaminated soil. The 16S ribosomal RNA genes of the Bacteria and the beta-Proteobacteria and the amoA gene (encoding the a-subunit of ammonia monooxygenase) were PCR-amplified and analysed by denaturing gradient gel electrophoresis (DGGE). Principal component analysis (PCA) of the DGGE data revealed that: (i) the heavy metals had the most drastic effects on the bacterial groups targeted, (ii) the plant induced changes which could be observed in the amoA and in the Bacteria 16S rRNA gene patterns, (iii) the changes observed during 12 months in the DGGE-patterns of the planted contaminated soil did not indicate recovery of the initial bacterial community present in the non-contaminated soil. The potential function of the microbial community was assessed recording community level physiological profiles (CLPP) and analysing them by PCA. The lower capability of the bacterial community to degrade the substrates provided in the BIOLOG plates, in particular the amino acids, amides and amines, as well as a delay in the average well colour development (AWCD) differentiated the bacterial community of the contaminated samples from that of the non-contaminated ones. However, the plant had a positive effect on substrate utilization as shown by the greater number of substrates used in all planted samples compared to implanted ones. Finally, the measurement of the potential ammonia oxidation indicated that ammonia oxidising bacteria were completely inhibited in the contaminated soil. The stimulation of ammonia oxidation by the plant observed in the non-contaminated samples was surpassed by the inhibitory effect of the heavy metals in the contaminated soil. This study emphasises the combined use of culture-independent techniques with conventional methods to investigate the ecology of bacteria in their natural habitats. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved

    Radiative Muon Capture on Hydrogen and the Induced Pseudoscalar Coupling

    Full text link
    The first measurement of the elementary process μpνμnγ\mu^- p \rightarrow \nu_{\mu} n \gamma is reported. A photon pair spectrometer was used to measure the partial branching ratio (2.10±0.22)×1082.10 \pm 0.22) \times 10^{-8} for photons of k > 60 MeV. The value of the weak pseudoscalar coupling constant determined from the partial branching ratio is gp(q2=0.88mμ2)=(9.8±0.7±0.3)ga(0)g_p(q^{2}=-0.88m_{\mu}^2) = (9.8 \pm 0.7 \pm 0.3) \cdot g_a(0), where the first error is the quadrature sum of statistical and systematic uncertainties and the second error is due to the uncertainty in λop\lambda_{op}, the decay rate of the ortho to para pμpp \mu p molecule. This value of g_p is \sim1.5 times the prediction of PCAC and pion-pole dominance.Comment: 13 pages, RevTeX type, 3 figures (encapsulated postscript), submitted to Phys. Rev. Let
    corecore