956 research outputs found

    Cosmological Magnetic Fields from Primordial Helical Seeds

    Get PDF
    Most early Universe scenarios predict negligible magnetic fields on cosmological scales if they are unprocessed during subsequent expansion of the Universe. We present a new numerical treatment of the evolution of primordial fields and apply it to weakly helical seeds as they occur in certain early Universe scenarios. We find that initial helicities not much larger than the baryon to photon number can lead to fields of about 10^{-13} Gauss with coherence scales slightly below a kilo-parsec today.Comment: 4 revtex pages, 2 postscript figures include

    Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions

    Full text link
    Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube collaboration.Comment: 36 pages, 17 figures, 1 tabl

    Electron-, Mu-, and Tau-Number Conservation in a Supernova Core

    Get PDF
    We study if the neutrino mixing parameters suggested by the atmospheric neutrino anomaly imply chemical equilibrium between mu- and tau-flavored leptons in a supernova (SN) core. The initial flavor-conversion rate would indeed be fast if the nu_mu-nu_tau-mixing angle were not suppressed by second-order refractive effects. The neutrino diffusion coefficients are different for nu_mu, anti-nu_mu, nu_tau and anti-nu_tau so that neutrino transport will create a net mu and tau lepton number density. This will typically lead to a situation where the usual first-order refractive effects dominate, further suppressing the rate of flavor conversion. Altogether, neutrino refraction has the nontrivial consequence of guaranteeing the separate conservation of e, mu, and tau lepton number in a SN core on the infall and cooling time scales, even when neutrino mixing angles are large.Comment: Slightly expanded version with improved presentation, no changes of substanc

    On The Origin of Very High Energy Cosmic Rays

    Full text link
    We discuss the most recent developments in our understanding of the acceleration and propagation of cosmic rays up to the highest energies. In particular we specialize our discussion to three issues: 1) developments in the theory of particle acceleration at shock waves; 2) the transition from galactic to extragalactic cosmic rays; 3) implications of up-to-date observations for the origin of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Article to appear in Modern Physics Letters A, Review Sectio

    Ultra-High Energy Cosmic Ray Nuclei from Individual Magnetized Sources

    Full text link
    We investigate the dependence of composition, spectrum and angular distributions of ultra-high energy cosmic rays above 10^19 eV from individual sources on their magnetization. We find that, especially for sources within a few megaparsecs from the observer, observable spectra and composition are severely modified if the source is surrounded by fields of ~ 10^-7 Gauss on scales of a few megaparsecs. Low energy particles diffuse over larger distances during their energy loss time. This leads to considerable hardening of the spectrum up to the energy where the loss distance becomes comparable to the source distance. Magnetized sources thus have very important consequences for observations, even if cosmic rays arrive within a few degrees from the source direction. At the same time, details in spectra and chemical composition may be intrinsically unpredictable because they depend on the unknown magnetic field structure. If primaries are predominantly nuclei of atomic mass A accelerated up to a maximum energy E_max with spectra not much softer than E^-2, secondary protons from photo-disintegration can produce a conspicuous peak in the spectrum at energy ~ E_max/A. A related feature appears in the average mass dependence on energy.Comment: 15 pages, 16 ps figures, published version with minor changes, see http://stacks.iop.org/1475-7516/2004/i=08/a=01

    IceCube-Plus: An Ultra-High Energy Neutrino Telescope

    Full text link
    While the first kilometer-scale neutrino telescope, IceCube, is under construction, alternative plans exist to build even larger detectors that will, however, b e limited by a much higher neutrino energy threshold of 10 PeV or higher rather than 10 to 100 GeV. These future projects detect radio and acoustic pulses as w ell as air showers initiated by ultra-high energy neutrinos. As an alternative, we here propose an expansion of IceCube, using the same strings, placed on a gri d with a spacing of order 500 m. Unlike other proposals, the expanded detector uses methods that are understood and calibrated on atmospheric neutrinos. Atmosp heric neutrinos represent the only background at the energies under consideratio n and is totally negligible. Also, the cost of such a detector is understood. We conclude that supplementing the 81 IceCube strings with a modest number of addi tional strings spaced at large distances can almost double the effective volume of the detector. Doubling the number of strings on a 800 m grid can deliver a d etector that this a factor of 5 larger for horizontal muons at modest cost.Comment: Version to be published in JCA

    Constrained Simulations of the Magnetic Field in the Local Universe and the Propagation of UHECRs

    Full text link
    We use simulations of LSS formation to study the build-up of magnetic fields (MFs) in the ICM. Our basic assumption is that cosmological MFs grow in a MHD amplification process driven by structure formation out of a seed MF present at high z. Our LCDM initial conditions for the density fluctuations have been statistically constrained by the observed galaxies, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, prominent galaxy clusters in our simulation coincide closely with their real counterparts. We find excellent agreement between RMs of our simulated clusters and observational data. The improved resolution compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of UHE protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies E=1e20eV and 4e19eV, respectively. Strong deflections are only produced if UHE protons cross clusters, however covering only a small area on the sky. Multiple crossings of sheets and filaments over larger distances may give rise to noticeable deflections, depending on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.Comment: 3revised version, JCAP, accepte
    corecore