1,143 research outputs found

    Centaurus A as the Source of ultra-high energy cosmic rays?

    Get PDF
    We present numerical simulations for energy spectra and angular distributions of nucleons above 10^{19} eV injected by the radio-galaxy Centaurus A at a distance 3.4 Mpc and propagating in extra-galactic magnetic fields in the sub-micro Gauss range. We show that field strengths B~0.3 micro Gauss, as proposed by Farrar and Piran, cannot provide sufficient angular deflection to explain the observational data. A magnetic field of intensity ~1 micro Gauss could reproduce the observed large-scale isotropy and could marginally explain the observed energy spectrum. However, it would not readily account for the E=320 plusminus 93 EeV Fly's Eye event that was detected at an angle 136 degrees away from Cen-A. Such a strong magnetic field also saturates observational upper limits from Faraday rotation observations and X-ray bremsstrahlung emission from the ambient gas (assuming equipartition of energy). This scenario may already be tested by improving magnetic field limits with existing instruments. We also show that high energy cosmic ray experiments now under construction will be able to detect the level of anisotropy predicted by this scenario. We conclude that for magnetic fields B~0.1-0.5 micro Gauss, considered as more reasonable for the local Supercluster environment, in all likelihood at least a few sources within ~10 Mpc from the Earth should contribute to the observed ultra high energy cosmic ray flux.Comment: 7 latex pages, 7 postscript figures included; for related numerical simulations see also http://www.iap.fr/users/sigl/r2e.htm

    Prolongation of Friction Dominated Evolution for Superconducting Cosmic Strings

    Get PDF
    This investigation is concerned with cosmological scenarios based on particle physics theories that give rise to superconducting cosmic strings (whose subsequent evolution may produce stable loop configurations known as vortons). Cases in which electromagnetic coupling of the string current is absent or unimportant have been dealt with in previous work. The purpose of the present work is to provide quantitative estimates for cases in which electromagnetic interaction with the surrounding plasma significantly affects the string dynamics. In particular it will be shown that the current can become sufficiently strong for the initial period of friction dominated string motion to be substantially prolonged, which would entail a reinforcement of the short length scale end of the spectrum of the string distribution, with potentially observable cosmological implications if the friction dominated scenario lasts until the time of plasma recombination.Comment: 10 pages Late

    Gravitational wave background from neutron star phase transition for a new class of equation of state

    Full text link
    We study the generation of a stochastic gravitational wave (GW) background produced by a population of neutron stars (NSs) which go over a hadron-quark phase transition in its inner shells. We obtain, for example, that the NS phase transition, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of hBG∌10−24h_{\rm BG} \sim 10^{-24}, in the frequency band ≃20−2000Hz\simeq 20-2000 {\rm Hz} for stars forming at redshifts of up to z≃20.z\simeq 20. We study the possibility of detection of this isotropic GW background by correlating signals of a pair of `advanced' LIGO observatories.Comment: 7 pages, 1 figur

    Implications of a Possible Clustering of Highest Energy Cosmic Rays

    Get PDF
    Very recently, a possible clustering of a subset of observed ultrahigh energy cosmic rays above about 40EeV (4x10^19eV) in pairs near the supergalactic plane was reported. We show that a confirmation of this effect would provide information on origin and nature of these events and, in case of charged primaries, imply interesting constraints on the extragalactic magnetic field. The observed time correlation would most likely rule out an association of these events with cosmological gamma ray bursts. If no prominent astrophysical source candidates such as powerful radiogalaxies can be found, the existence of a mechanism involving new fundamental physics would be favored.Comment: 10 latex pages, 1 postscript figure, uses aaspp4.sty, submitted to Astrophysical Journal Letter

    Cosmological Magnetic Fields from Primordial Helical Seeds

    Get PDF
    Most early Universe scenarios predict negligible magnetic fields on cosmological scales if they are unprocessed during subsequent expansion of the Universe. We present a new numerical treatment of the evolution of primordial fields and apply it to weakly helical seeds as they occur in certain early Universe scenarios. We find that initial helicities not much larger than the baryon to photon number can lead to fields of about 10^{-13} Gauss with coherence scales slightly below a kilo-parsec today.Comment: 4 revtex pages, 2 postscript figures include

    Ultra-High Energy Cosmic Ray Nuclei from Individual Magnetized Sources

    Full text link
    We investigate the dependence of composition, spectrum and angular distributions of ultra-high energy cosmic rays above 10^19 eV from individual sources on their magnetization. We find that, especially for sources within a few megaparsecs from the observer, observable spectra and composition are severely modified if the source is surrounded by fields of ~ 10^-7 Gauss on scales of a few megaparsecs. Low energy particles diffuse over larger distances during their energy loss time. This leads to considerable hardening of the spectrum up to the energy where the loss distance becomes comparable to the source distance. Magnetized sources thus have very important consequences for observations, even if cosmic rays arrive within a few degrees from the source direction. At the same time, details in spectra and chemical composition may be intrinsically unpredictable because they depend on the unknown magnetic field structure. If primaries are predominantly nuclei of atomic mass A accelerated up to a maximum energy E_max with spectra not much softer than E^-2, secondary protons from photo-disintegration can produce a conspicuous peak in the spectrum at energy ~ E_max/A. A related feature appears in the average mass dependence on energy.Comment: 15 pages, 16 ps figures, published version with minor changes, see http://stacks.iop.org/1475-7516/2004/i=08/a=01

    The Role of Small to Moderate Volcanic Eruptions in the Early 19th Century Climate

    Get PDF
    Small-to-moderate volcanic eruptions can lead to significant surface cooling when they occur clustered, as observed in recent decades. In this study, based on new high-resolution ice-core data from Greenland, we produce a new volcanic forcing data set that includes several small-to-moderate eruptions not included in prior reconstructions and investigate their climate impacts of the early 19th century through ensemble simulations with the Max Planck Institute Earth System Model. We find that clustered small-to-moderate eruptions produce significant additional global surface cooling (∌0.07 K) during the period 1812–1820, superposing with the cooling by large eruptions in 1809 (unidentified location) and 1815 (Tambora). This additional cooling helps explain the reconstructed long-lasting cooling after the large eruptions, but simulated regional impacts cannot be confirmed with reconstructions due to a low signal-to-noise ratio. This study highlights the importance of small-to-moderate eruptions for climate simulations as their impacts can be comparable with that of solar irradiance changes

    Do many-particle neutrino interactions cause a novel coherent effect?

    Full text link
    We investigate whether coherent flavor conversion of neutrinos in a neutrino background is substantially modified by many-body effects, with respect to the conventional one-particle effective description. We study the evolution of a system of interacting neutrino plane waves in a box. Using its equivalence to a system of spins, we determine the character of its behavior completely analytically. We find that, if the neutrinos are initially in flavor eigenstates, no coherent flavor conversion is realized, in agreement with the effective one-particle description. This result does not depend on the size of the neutrino wavepackets and therefore has a general character. The validity of the several important applications of the one-particle formalism is thus confirmed.Comment: 25 pages, 1 figur
    • 

    corecore