12 research outputs found

    Identification of disease-related aberrantly spliced transcripts in myeloma and strategies to target these alterations by RNA-based therapeutics

    No full text
    Abstract Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a “proof of concept”, we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well

    Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome

    No full text
    The hCHK2 gene encodes the human homolog of the yeast Cds1 and Rad53 G 2 checkpoint kinases, whose activation in response to DNA damage prevents cellular entry into mitosis. Here, it is shown that heterozygous germ line mutations in hCHK2 occur in Li-Fraumeni syndrome, a highly penetrant familial cancer phenotype usually associated with inherited mutations in the TP53 gene. These observations suggest that hCHK2 is a tumor suppressor gene conferring predisposition to sarcoma, breast cancer, and brain tumors, and they also provide a link between the central role of p53 inactivation in human cancer and the well-defined G 2 checkpoint in yeast. </jats:p
    corecore