1,303 research outputs found

    Readout and Control of a Power-recycled Interferometric Gravitational-wave Antenna

    Get PDF
    Interferometric gravitational wave antennas are based on Michelson interferometers whose sensitivity to small differential length changes has been enhanced by adding multiple coupled optical resonators. The use of optical cavities is essential for reaching the required sensitivity, but sets challenges for the control system which must maintain the cavities near resonance. The goal for the strain sensitivity of the Laser Interferometer Gravitational-wave Observatory (LIGO) is 10^-21 rms, integrated over a 100 Hz bandwidth centered at 150 Hz. We present the major design features of the LIGO length and frequency sensing and control system which will hold the differential length to within 5 10^-14 m of the operating point. We also highlight the restrictions imposed by couplings of noise into the gravitational wave readout signal and the required immunity against them.Comment: Presentation at ICALEPCS 2001, San Jose, November 2001, (WECT003), 3 page

    An all-optical trap for a gram-scale mirror

    Get PDF
    We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.Comment: Major revision. Replacement is version that appears in Phy. Rev. Lett. 98, 150802 (2007

    Atmosphere-snow transfer function for H2O2: microphysical considerations

    Get PDF
    H2O2 analyses of polar ice cores show an increase in concentration from 200 years to the present. In order to quantitatively relate the observed trend in the ice to atmospheric levels, the atmosphere-snow transfer behavior and postdepositional changes must be known. Atmosphere-snow transfer was studied by investigating uptake and release of H2O2 in a series of laboratory column experiments in the temperature range −3°C to −45°C. Experiments consisted of passing H2O2-containing air through a column packed with 200-ÎŒm diameter ice spheres and measuring the change in gas phase H2O2 concentration with time. The uptake of H2O2 was a slow process requiring several hours to reach equilibrium. Uptake involved incorporation of H2O2 into the bulk ice as well as surface accumulation. The amount of H2O2 taken up by the ice was greater at the lower temperatures. The sticking coefficient for H2O2 on ice in the same experiments was estimated to be of the order of 0.02 to 0.5. Release of H2O2 from the ice occurred upon passing H2O2-free air through the packed columns, with the time scale for degassing similar to that for uptake. These results suggest that systematic losses of H2O2 from polar snow could occur under similar conditions, when atmospheric concentrations of H2O2 are low, that is, in the winter

    Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors

    Get PDF
    We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in phase and amplitude of modern interferometric GW detectors. Knowledge of calibration to such certainties shall enhance the scientific output of the instruments in case of an eventual detection of GWs. The method relies on a rotating symmetrical two-body mass, a Dynamic gravity Field Generator (DFG). The placement of the DFG in the proximity of one of the interferometer's suspended test masses generates a change in the local gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure

    Performance of a 1200m long suspended Fabry-Perot cavity

    Full text link
    Using one arm of the Michelson interferometer and the power recycling mirror of the interferometric gravitational wave detector GEO600, we created a Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment was to gather first experience with the main optics, its suspensions and the corresponding control systems. The residual displacement of a main mirror is about 150 nm rms. By stabilising the length of the 1200 m long cavity to the pre-stabilised laser beam we achieved an error point frequency noise of 0.1 mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the reliable performance of all included subsystems by several 10-hour-periods of continuous stable operation. Thus the full frequency stabilisation scheme for GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure

    Photon pressure induced test mass deformation in gravitational-wave detectors

    Get PDF
    A widely used assumption within the gravitational-wave community has so far been that a test mass acts like a rigid body for frequencies in the detection band, i.e. for frequencies far below the first internal resonance. In this article we demonstrate that localized forces, applied for example by a photon pressure actuator, can result in a non-negligible elastic deformation of the test masses. For a photon pressure actuator setup used in the gravitational wave detector GEO600 we measured that this effect modifies the standard response function by 10% at 1 kHz and about 100% at 2.5 kHz

    Status of the joint LIGO--TAMA300 inspiral analysis

    Full text link
    We present the status of the joint search for gravitational waves from inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the LIGO and TAMA collaborations. In this paper we discuss what has been learned from an analysis of a subset of the data sample reserved as a ``playground''. We determine the coincidence conditions for parameters such as the coalescence time and chirp mass by injecting simulated Galactic binary neutron star signals into the data stream. We select coincidence conditions so as to maximize our efficiency of detecting simulated signals. We obtain an efficiency for our coincident search of 78 %, and show that we are missing primarily very distant signals for TAMA300. We perform a time slide analysis to estimate the background due to accidental coincidence of noise triggers. We find that the background triggers have a very different character from the triggers of simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos, minor change

    A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors

    Full text link
    We describe a hierarchical data analysis pipeline for coherently searching for gravitational wave (GW) signals from non-spinning compact binary coalescences (CBCs) in the data of multiple earth-based detectors. It assumes no prior information on the sky position of the source or the time of occurrence of its transient signals and, hence, is termed "blind". The pipeline computes the coherent network search statistic that is optimal in stationary, Gaussian noise, and allows for the computation of a suite of alternative statistics and signal-based discriminators that can improve its performance in real data. Unlike the coincident multi-detector search statistics employed so far, the coherent statistics are different in the sense that they check for the consistency of the signal amplitudes and phases in the different detectors with their different orientations and with the signal arrival times in them. The first stage of the hierarchical pipeline constructs coincidences of triggers from the multiple interferometers, by requiring their proximity in time and component masses. The second stage follows up on these coincident triggers by computing the coherent statistics. The performance of the hierarchical coherent pipeline on Gaussian data is shown to be better than the pipeline with just the first (coincidence) stage.Comment: 12 pages, 3 figures, accepted for publication in Classical and Quantum Gravit
    • 

    corecore