Interferometric gravitational wave antennas are based on Michelson
interferometers whose sensitivity to small differential length changes has been
enhanced by adding multiple coupled optical resonators. The use of optical
cavities is essential for reaching the required sensitivity, but sets
challenges for the control system which must maintain the cavities near
resonance. The goal for the strain sensitivity of the Laser Interferometer
Gravitational-wave Observatory (LIGO) is 10^-21 rms, integrated over a 100 Hz
bandwidth centered at 150 Hz. We present the major design features of the LIGO
length and frequency sensing and control system which will hold the
differential length to within 5 10^-14 m of the operating point. We also
highlight the restrictions imposed by couplings of noise into the gravitational
wave readout signal and the required immunity against them.Comment: Presentation at ICALEPCS 2001, San Jose, November 2001, (WECT003), 3
page