68 research outputs found

    Multiple stochastic pathways in forced peptide-lipid membrane detachment

    Get PDF
    We have used high resolution AFM based dynamic force spectroscopy to investigate peptide-lipid membrane interactions by measuring the detachment (last-rupture) force distribution, P(F), and the corresponding force dependent rupture rate, k(F), for two different peptides and lipid bilayers. The measured quantities, which differed considerably for different peptides, lipid-membranes, AFM tips (prepared under identical conditions), and retraction speeds of the AFM cantilever, could not be described in terms of the standard theory, according to which detachment occurs along a single pathway, corresponding to a diffusive escape process across a free energy barrier. In particular, the prominent retraction speed dependence of k(F) was a clear indication that peptide-lipid membrane dissociation occurs stochastically along several detachment pathways. Thereby, we have formulated a general theoretical approach for describing P(F) and k(F), by assuming that peptide detachment from lipid membranes occurs, with certain probability, along a few dominant diffusive pathways. This new method was validated through a consistent interpretation of the experimental data. Furthermore, we have found that for moderate retraction speeds at intermediate force values, k(F) exhibits catch-bond behavior (i.e. decreasing detachment rate with increasing force). According to the proposed model this behavior is due to the stochastic mixing of individual detachment pathways which do not convert or cross during rupture. To our knowledge, such catch-bond mechanism has not been proposed and demonstrated before for a peptide-lipid interaction

    pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57BI6 and ApoE Knockout Mice Fed a Western Diet

    Get PDF
    We have previously reported that the alpha1 subunit of sodium potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a western diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity, but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. And furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype

    Integrated Proteomic and Transcriptomic Investigation of the Acetaminophen Toxicity in Liver Microfluidic Biochip

    Get PDF
    Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations

    Advances of genomic science and systems biology in renal transplantation: a review

    Get PDF
    The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process

    Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    Full text link

    Distal Renal Tubular Acidosis in Adolescence with Severe Growth Retardation and Nephrocalcinosis

    No full text
    Chronic acidosis is an important, often overlooked cause of growth retardation. Here we present the case of a girl with distal renal tubular acidosis who had visited multiple hospitals before the diagnosis was made. She presented to us in adolescence with non anion gap metabolic acidosis, hypokalemia, severe growth retardation and nephrocalcinosis. In 18 months follow up with alkali therapy, she had good weight gain and growth velocity. Keywords: growth retardation; hypokalemia; nephrocalcinosis; renal tubular acidosis
    corecore