9 research outputs found

    The Contact Allergen NiSO4 Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS

    Get PDF
    Dendritic cells (DC) play a central role in the pathogenesis of allergic contact dermatitis (ACD), the most prevalent form of immunotoxicity in humans. However, knowledge on allergy-induced DC maturation is still limited and proteomic studies, allowing to unravel molecular effects of allergens, remain scarce. Therefore, we conducted a global proteomic analysis of human monocyte-derived dendritic cells (MoDC) treated with NiSO4, the most prominent cause of ACD and compared proteomic alterations induced by NiSO4 to the bacterial trigger lipopolysaccharide (LPS). Both substances possess a similar toll-like receptor (TLR) 4 binding capacity, allowing to identify allergy-specific effects compared to bacterial activation. MoDCs treated for 24 h with 2.5 mu g/ml LPS displayed a robust immunological response, characterized by upregulation of DC activation markers, secretion of pro-inflammatory cytokines and stimulation of T cell proliferation. Similar immunological reactions were observed after treatment with 400 mu M NiSO4 but less pronounced. Both substances triggered TLR4 and triggering receptor expressed on myeloid cells (TREM) 1 signaling. However, NiSO4 also activated hypoxic and apoptotic pathways, which might have overshadowed initial signaling. Moreover, our proteomic data support the importance of nuclear factor erythroid 2-related factor 2 (Nrf2) as a key player in sensitization since many Nrf2 targets genes were strongly upregulated on protein and gene level selectively after treatment with NiSO4. Strikingly, NiSO4 stimulation induced cellular cholesterol depletion which was counteracted by the induction of genes and proteins relevant for cholesterol biosynthesis. Our proteomic study allowed for the first time to better characterize some of the fundamental differences between NiSO4 and LPS-triggered activation of MoDCs, providing an essential contribution to the molecular understanding of contact allergy

    Frequencies and TCR Repertoires of Human 2,4,6-Trinitrobenzenesulfonic Acid-specific T Cells

    Get PDF
    Allergic contact dermatitis is a widespread T cell-mediated inflammatory skin disease, but in vitro monitoring of chemical-specific T cells remains challenging. We here introduce short-term CD154/CD137 upregulation to monitor human T cell responses to the experimental sensitizer 2,4,6-trinitrobenzenesulfonic acid (TNBS). Peripheral blood mononuclear cells (PBMC) from healthy donor buffy coats were TNBS-modified and incubated with unmodified PBMC. After 5 and 16 h, we detected TNBS-specific activated CD154+CD4+ and CD137+CD8+ T cells by multi-parameter flow cytometry, respectively. Activated cells were sorted for restimulation and bulk T cell receptor (TCR) high-throughput sequencing (HTS). Stimulation with TNBS-modified cells (3 mM) induced CD154 expression on 0.04% of CD4+ and CD137 expression on 0.60% of CD8+ memory T cells, respectively (means, n = 11–17 donors). CD69 co-expression argued for TCR-mediated activation, which was further supported by TNBS-specific restimulation of 10/13 CD154+CD4+ and 11/15 CD137+CD8+ T cell clones and lines. Major histocompatibility complex (MHC) blocking antibodies prevented activation, illustrating MHC restriction. The high frequencies of TNBS-specific T cells were associated with distinct common changes in the TCR β-chain repertoire. We observed an overrepresentation of tryptophan and lysine in the complementarity determining regions 3 (CDR3) (n = 3–5 donors), indicating a preferential interaction of these amino acids with the TNBS-induced epitopes. In summary, the detection of TNBS-specific T cells by CD154/CD137 upregulation is a fast, comprehensive and quantitative method. Combined with TCR HTS, the mechanisms of chemical allergen recognition that underlie unusually frequent T cell activation can be assessed. In the future, this approach may be adapted to detect T cells activated by additional chemical sensitizers

    αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell–related features

    Get PDF
    Objectives: To characterize phenotypes of T cells that accumulated in multiple sclerosis (MS) lesions, to compare the lesional T-cell receptor (TCR) repertoire of T-cell subsets to peripheral blood, and to identify paired α and β chains from single CD8+ T cells from an index patient who we followed for 18 years. Methods: We combined immunohistochemistry, laser microdissection, and single-cell multiplex PCR to characterize T-cell subtypes and identify paired TCRα and TCRβ chains from individual brain-infiltrating T cells in frozen brain sections. The lesional and peripheral TCR repertoires were analyzed by pyrosequencing. Results: We found that a TCR Vβ1+ T-cell population that was strikingly expanded in active brain lesions at clinical onset comprises several subclones expressing distinct yet closely related Vα7.2+ α chains, including a canonical Vα7.2-Jα33 chain of mucosal-associated invariant T (MAIT) cells. Three other α chains bear striking similarities in their antigen-recognizing, hypervariable complementarity determining region 3. Longitudinal repertoire studies revealed that the TCR chains that were massively expanded in brain at onset persisted for several years in blood or CSF but subsequently disappeared except for the canonical Vα7.2+ MAIT cell and a few other TCR sequences that were still detectable in blood after 18 years. Conclusions: Our observation that a massively expanded TCR Vβ1-Jβ2.3 chain paired with distinct yet closely related canonical or atypical MAIT cell–related α chains strongly points to an antigen-driven process in early active MS brain lesions

    In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals—A Systematic Review

    No full text
    Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments

    Tattoos – mehr als nur kolorierte Haut? Auf der Suche nach Tattoo‐Allergenen

    No full text
    Zusammenfassung Beim Tatowieren wird eine erhebliche Menge an Tinte in die Haut eingestochen. Tatowiertinten enthalten zahlreiche Inhaltsstoffe, dazu zahlen Farbpigmente, Verunreinigungen, Losungsmittel, Emulgatoren und Konservierungsmittel. Schwarze amorphe Kohlenstoffpartikel (Carbon Black), wei ss es Titandioxid, Azo- oder polyzyklische Pigmente lassen alle moglichen Farbnuancen im sichtbaren Spektrum entstehen. Einige Inhaltsstoffe von Tatowiertinten konnen gefahrliche und allergieauslosende Chemikalien mit unbekanntem Gefahrenpotenzial sein. In Deutschland sind etwa 20 % der Bevolkerung tatowiert und es wird zunehmend uber die damit einhergehenden unerwunschten Wirkungen berichtet. Da Tatowiernadeln unweigerlich die Haut verletzen, konnen Mikroorganismen in die Wunde eindringen und Infektionen verursachen. Wahrend oder nach der Wundheilung kann es sowohl zu nichtallergischen Entzundungsreaktionen (zum Beispiel kutanen Granulomen und Pseudolymphomen) als auch zu allergischen Reaktionen kommen. Besonders bei den Allergien, die nach Wochen, Monaten oder sogar Jahren auftreten konnen, bleibt es schwierig, den oder die auslosenden Substanzen zu identifizieren. Diese ubersichtsarbeit fasst mogliche unerwunschte Wirkungen im Zusammenhang mit dem Tatowieren zusammen, wobei der Schwerpunkt auf der Allergieentstehung liegt. Bislang wurden relevante Allergene nur selten identifiziert. Im Folgenden stellen wir etablierte Methoden vor und diskutieren aktuelle experimentelle Ansatze zur Identifizierung von Allergenen in Tatowiertinten - uber Tests am Patienten und in vitro

    Tattoos – more than just colored skin? Searching for tattoo allergens

    Get PDF
    During tattooing, a high amount of ink is injected into the skin. Tattoo inks contain numerous substances such as the coloring pigments, impurities, solvents, emulsifiers, and preservatives. Black amorphous carbon particles (carbon black), white titanium dioxide, azo or polycyclic pigments create all varieties of color shades in the visible spectrum. Some ingredients of tattoo inks might be hazardous and allergenic chemicals of unknown potential. In Germany, about 20 % of the general population is tattooed and related adverse reactions are increasingly reported. Since tattoo needles inevitably harm the skin, microorganisms can enter the wound and may cause infections. Non-allergic inflammatory reactions (for example cutaneous granuloma and pseudolymphoma) as well as allergic reactions may emerge during or after wound healing. Especially with allergies occurring after weeks, months or years, it remains difficult to identify the specific ingredient(s) that trigger the reaction. This review summarizes possible adverse effects related to tattooing with a focus on the development of tattoo-mediated allergies. To date, relevant allergens were only identified in rare cases. Here we present established methods and discuss current experimental approaches to identify culprit allergens in tattoo inks – via testing of the patient and in vitro approaches

    Multiple environmental antigens may trigger autoimmunity in psoriasis through T-cell receptor polyspecificity

    No full text
    IntroductionPsoriasis is a T-cell mediated autoimmune skin disease. HLA-C*06:02 is the main psoriasis-specific risk gene. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone we had discovered that, as an underlying pathomechanism, HLA-C*06:02 mediates an autoimmune response against melanocytes in psoriasis, and we had identified an epitope from ADAMTS-like protein 5 (ADAMTSL5) as a melanocyte autoantigen. The conditions activating the psoriatic autoimmune response in genetically predisposed individuals throughout life remain incompletely understood. Here, we aimed to identify environmental antigens that might trigger autoimmunity in psoriasis because of TCR polyspecificity.MethodsWe screened databases with the peptide recognition motif of the Vα3S1/Vβ13S1 TCR for environmental proteins containing peptides activating this TCR. We investigated the immunogenicity of these peptides for psoriasis patients and healthy controls by lymphocyte stimulation experiments and peptide-loaded HLA-C*06:02 tetramers.ResultsWe identified peptides from wheat, Saccharomyces cerevisiae, microbiota, tobacco, and pathogens that activated both the Vα3S1/Vβ13S1 TCR and CD8+ T cells from psoriasis patients. Using fluorescent HLA-C*06:02 tetramers loaded with ADAMTSL5 or wheat peptides, we find that the same CD8+ T cells may recognize both autoantigen and environmental antigens. A wheat-free diet could alleviate psoriasis in several patients.DiscussionOur results show that due to TCR polyspecificity, several environmental antigens corresponding to previously suspected psoriasis risk conditions converge in the reactivity of a pathogenic psoriatic TCR and might thus be able to stimulate the psoriatic autoimmune response against melanocytes. Avoiding the corresponding environmental risk factors could contribute to the management of psoriasis
    corecore