23 research outputs found

    Proteorhodopsins dominate the expression of phototrophic mechanisms in seasonal and dynamic marine picoplankton communities

    Get PDF
    The most abundant and ubiquitous microbes in the surface ocean use light as an energy source, capturing it via complex chlorophyll-based photosystems or simple retinal-based rhodopsins. Studies in various ocean regimes compared the abundance of these mechanisms, but few investigated their expression. Here we present the first full seasonal study of abundance and expression of light-harvesting mechanisms (proteorhodopsin, PR; aerobic anoxygenic photosynthesis, AAnP; and oxygenic photosynthesis, PSI) from deep-sequenced metagenomes and metatranscriptomes of marine picoplankton (<1 µm) at three coastal stations of the San Pedro Channel in the Pacific Ocean. We show that, regardless of season or sampling location, the most common phototrophic mechanism in metagenomes of this dynamic region was PR (present in 65–104% of the genomes as estimated by single-copy recA), followed by PSI (5–104%) and AAnP (5–32%). Furthermore, the normalized expression (RNA to DNA ratio) of PR genes was higher than that of oxygenic photosynthesis (average ± standard deviation 26.2 ± 8.4 vs. 11 ± 9.7), and the expression of the AAnP marker gene was significantly lower than both mechanisms (0.013 ± 0.02). We demonstrate that PR expression was dominated by the SAR11-cluster year-round, followed by other Alphaproteobacteria, unknown-environmental clusters and Gammaproteobacteria. This highly dynamic system further allowed us to identify a trend for PR spectral tuning, in which blue-absorbing PR genes dominate in areas with low chlorophyll-a concentrations (<0.25 µgL−1). This suggests that PR phototrophy is not an accessory function but instead a central mechanism that can regulate photoheterotrophic population dynamics

    The Bioinformatics Virtual Coordination Network: An open-source and interactive learning environment

    Get PDF
    Lockdowns and “stay-at-home” orders, starting in March 2020, shuttered bench and field dependent research across the world as a consequence of the global COVID-19 pandemic. The pandemic continues to have an impact on research progress and career development, especially for graduate students and early career researchers, as strict social distance limitations stifle ongoing research and impede in-person educational programs. The goal of the Bioinformatics Virtual Coordination Network (BVCN) was to reduce some of these impacts by helping research biologists learn new skills and initiate computational projects as alternative ways to carry out their research. The BVCN was founded in April 2020, at the peak of initial shutdowns, by an international group of early-career microbiology researchers with expertise in bioinformatics and computational biology. The BVCN instructors identified several foundational bioinformatic topics and organized hands-on tutorials through cloud-based platforms that had minimal hardware requirements (in order to maximize accessibility) such as RStudio Cloud and MyBinder. The major topics included the Unix terminal interface, R and Python programming languages, amplicon analysis, metagenomics, functional protein annotation, transcriptome analysis, network science, and population genetics and comparative genomics. The BVCN was structured as an open-access resource with a central hub providing access to all lesson content and hands-on tutorials (https://biovcnet.github.io/). As laboratories reopened and participants returned to previous commitments, the BVCN evolved: while the platform continues to enable “a la carte” lessons for learning computational skills, new and ongoing collaborative projects were initiated among instructors and participants, including a virtual, open-access bioinformatics conference in June 2021. In this manuscript we discuss the history, successes, and challenges of the BVCN initiative, highlighting how the lessons learned and strategies implemented may be applicable to the development and planning of future courses, workshops, and training programs

    Prd from metagenomic assemblies

    No full text
    Amino acid sequences of Prd identified in contigs assembled from metagenomes - surface seawater from the San Pedro Channel, minimum sequence length 200 amino acid

    PsaA from metagenomic assemblies

    No full text
    Photosystem I (PsaA) amino acid sequences from metagenomic assemblies - surface water from the San Pedro Channe

    Viral contigs from surface seawater cellular metatranscriptomes

    No full text
    Partial viral genomes assembled from cellular metatranscriptomes of cells 0.2-1u from surface seawater in the San Pedro Channel, CA, USA

    RecA from metagenomic assemblies

    No full text
    Amino acid sequences of RecA from metagenomic contigs - surface seawater from the San Pedro Channe

    Nutrient concentrations and cell/virus-like particles counts

    No full text
    Dataset: Nutrient concentrations and cell/virus-like particles countsNutrient concentrations and cell/virus-like particles counts. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/866781NSF Division of Ocean Sciences (NSF OCE) OCE-173740
    corecore