175 research outputs found
Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems
Inclusive and exclusive hard-photon (E 30 MeV) production in five
different heavy-ion reactions (Ar+Au, Ag, Ni,
C at 60{\it A} MeV and Xe+Sn at 50{\it A} MeV) has been
studied coupling the TAPS photon spectrometer with several charged-particle
multidetectors covering more than 80% of 4. The measured spectra, slope
parameters and source velocities as well as their target-dependence, confirm
the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon
collisions that accounts for roughly 20% of the total hard-photon yield. The
thermal slopes are a direct measure of the temperature of the excited nuclear
systems produced during the reaction.Comment: 4 pages, 3 figures, Proceedings CRIS 2000, 3rd Catania Relativistic
Ion Studies, "Phase Transitions in Strong Interactions: Status and
Perspectives", Acicastello, Italy, May 22-26, 2000 (to be published in Nuc.
Phys. A
Alpha-decay branching ratios of near-threshold states in <sup>19</sup>Ne and the astrophysical rate of <sup>15</sup> O(α, γ )<sup>19</sup>Ne
The 15O(α,γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21lNe,t)19Ne reaction at 43 MeV/u.</p
Evidence for Thermal Equilibration in Multifragmentation Reactions probed with Bremsstrahlung Photons
The production of nuclear bremsstrahlung photons (E 30 MeV) has
been studied in inclusive and exclusive measurements in four heavy-ion
reactions at 60{\it A} MeV. The measured photon spectra, angular distributions
and multiplicities indicate that a significant part of the hard-photons are
emitted in secondary nucleon-nucleon collisions from a thermally equilibrated
system. The observation of the thermal component in multi-fragment
Ar+Au reactions suggests that the breakup of the thermalized
source produced in this system occurs on a rather long time-scale.Comment: Revised version, accepted for publication in Physical Review Letters.
4 pages, 4 fig
Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne
The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the
hot CNO cycles into the rp process in accreting neutron stars. Its
astrophysical rate depends critically on the decay properties of excited states
in 19Ne lying just above the 15O + alpha threshold. We have measured the
alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction
at 43 MeV/u. Combining our measurements with previous determinations of the
radiative widths of these states, we conclude that no significant breakout from
the hot CNO cycle into the rp process in novae is possible via
15O(alpha,gamma)19Ne, assuming current models accurately represent their
temperature and density conditions
Suppression of soft nuclear bremsstrahlung in proton-nucleus collisions
Photon energy spectra up to the kinematic limit have been measured in 190 MeV
proton reactions with light and heavy nuclei to investigate the influence of
the multiple-scattering process on the photon production. Relative to the
predictions of models based on a quasi-free production mechanism a strong
suppression of bremsstrahlung is observed in the low-energy region of the
photon spectrum. We attribute this effect to the interference of photon
amplitudes due to multiple scattering of nucleons in the nuclear medium.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let
Photon Production in Heavy-ion Collisions Close to the Pion Threshold
We report on a measurement of hard photons (Eg>30 MeV) in the reaction Ar+Ca
at 180A MeV at an energy in which photons from the decay of pi0 mesons are
dominating. Simultaneous measurement with the TAPS spectrometer of the photon
spectrum and photon-photon coincidences used for the identification of pi0
enabled the subtraction of pi0 contribution. The resulting photon spectrum
exhibits an exponential shape with an inverse slope of
E0=(53+-0.03(stat)-5+8(syst)) MeV. The photon multiplicity, equal to
(1.21+-0.03(stat)+0.3-0.2(syst))10E0-2, is roughly one order of magnitude
larger than the value extrapolated from existing systematics. This enhancement
of the hard photon production is attributed to a strong increase in the
contribution of secondary np collisions to the total photon yield. We conclude
that, on average, the number of np collisions which contribute to the hard
photon production is 7 times larger than the number of first chance np
collisions in the reaction Ar+Ca at 180A MeV.Comment: 15 pages, 4 figures, references adde
- âŠ