2,098 research outputs found
Microlensing by Cosmic Strings
We consider the signature and detectability of gravitational microlensing of
distant quasars by cosmic strings. Because of the simple image configuration
such events will have a characteristic light curve, in which a source would
appear to brighten by exactly a factor of two, before reverting to its original
apparent brightness. We calculate the optical depth and event rate, and
conclude that current predictions and limits on the total length of strings on
the sky imply optical depths of \la 10^{-8} and event rates of fewer than one
event per sources per year. Disregarding those predictions but replacing
them with limits on the density of cosmic strings from the CMB fluctuation
spectrum, leaves only a small region of parameter space (in which the sky
contains about strings with deficit angle of order 0.3
milli-arcseconds) for which a microlensing survey of exposure
source-years, spanning a 20--40-year period, might reveal the presence of
cosmic strings.Comment: 4 pages, accepted for publication in MNRA
Disruptive Knowledge in Education for Reconciliation: The Effects of Indigenous Course Requirements on Non-Indigenous Students’ AttitudesÂ
Following the Truth and Reconciliation Commission of Canada, various institutions have embarked on diverse educational initiatives in the name of creating equitable and respectful relationships between Indigenous and non-Indigenous Peoples. One such initiative is the University of Winnipeg’s mandate that all undergraduate students fulfill an Indigenous Course Requirement (ICR). Using the framework of disruptive knowledge, this mixed-methods study investigated the impact of select ICR courses on non-Indigenous students’ attitudes. Results revealed increased recognition of discriminations facing Indigenous Peoples, increased support for systemic change, and self-described behavioural changes. At the same time, these results highlight the limitations of such courses within a settler-colonial context.À la suite de la Commission de vérité et réconciliation du Canada (CVR), diverses institutions se sont lancées dans des initiatives éducatives variées au nom de la création de relations équitables et respectueuses entre les peuples autochtones et non autochtones. L›une de ces initiatives est le mandat de l›Université de Winnipeg, selon lequel tous les étudiants de premier cycle suivent un cours obligatoire qui répondra à une exigence de cours autochtone (ECA). En utilisant la théorie des connaissances perturbatrices, cette étude à méthodes-mixtes a examiné l›impact de certains cours (ECA) sur les attitudes des étudiants non autochtones. Les résultats ont révélé une reconnaissance amplifiée des discriminations auxquelles les peuples autochtones sont confrontés, un soutien développé aux initiatives d›équité du gouvernement et des changements de comportement et de pensées auto-décrits. En même temps, ces résultats mettent en évidence les limites de tels cours dans un contexte de colonisation
Thomas-Fermi Approximation for a Condensate with Higher-order Interactions
We consider the ground state of a harmonically trapped Bose-Einstein
condensate within the Gross-Pitaevskii theory including the effective-range
corrections for a two-body zero-range potential. The resulting non-linear
Schr\"odinger equation is solved analytically in the Thomas-Fermi approximation
neglecting the kinetic energy term. We present results for the chemical
potential and the condensate profiles, discuss boundary conditions, and compare
to the usual Thomas-Fermi approach. We discuss several ways to increase the
influence of effective-range corrections in experiment with magnetically
tunable interactions. The level of tuning required could be inside experimental
reach in the near future.Comment: 8 pages, RevTex4 format, 5 figure
Cosmic String Cusps with Small-Scale Structure: Their Forms and Gravitational Waveforms
We present a method for the introduction of small-scale structure into
strings constructed from products of rotation matrices. We use this method to
illustrate a range of possibilities for the shape of cusps that depends on the
properties of the small-scale structure. We further argue that the presence of
structure at cusps under most circumstances leads to the formation of loops at
the size of the smallest scales. On the other hand we show that the
gravitational waveform of a cusp remains generally unchanged; the primary
effect of small-scale structure is to smooth out the sharp waveform emitted in
the direction of cusp motion.Comment: RevTeX, 8 pages. Replaced with version accepted for publication by
PR
Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints
We discuss data analysis techniques that can be used in the search for
gravitational wave bursts from cosmic strings. When data from multiple
interferometers are available, we describe consistency checks that can be used
to greatly reduce the false alarm rates. We construct an expression for the
rate of bursts for arbitrary cosmic string loop distributions and apply it to
simple known solutions. The cosmology is solved exactly and includes the
effects of a late-time acceleration. We find substantially lower burst rates
than previous estimates suggest and explain the disagreement. Initial LIGO is
unlikely to detect field theoretic cosmic strings with the usual loop sizes,
though it may detect cosmic superstrings as well as cosmic strings and
superstrings with non-standard loop sizes (which may be more realistic). In the
absence of a detection, we show how to set upper limits based on the loudest
event. Using Initial LIGO sensitivity curves, we show that these upper limits
may result in interesting constraints on the parameter space of theories that
lead to the production of cosmic strings.Comment: Replaced with version accepted for publication in PR
Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings
We compute the contribution of kinks on cosmic string loops to stochastic
background of gravitational waves (SBGW).We find that kinks contribute at the
same order as cusps to the SBGW.We discuss the accessibility of the total
background due to kinks as well as cusps to current and planned gravitational
wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic
microwave background (CMB), and pulsar timing constraints. As in the case of
cusps, we find that current data from interferometric gravitational wave
detectors, such as LIGO, are sensitive to areas of parameter space of cosmic
string models complementary to those accessible to pulsar, BBN, and CMB bounds.Comment: 24 pages, 3 figure
Neutrino-Nucleus Reactions and Muon Capture in 12C
The neutrino-nucleus cross section and the muon capture rate are discussed
within a simple formalism which facilitates the nuclear structure calculations.
The corresponding formulae only depend on four types of nuclear matrix
elements, which are currently used in the nuclear beta decay. We have also
considered the non-locality effects arising from the velocity-dependent terms
in the hadronic current. We show that for both observables in 12C the higher
order relativistic corrections are of the order of ~5 only, and therefore do
not play a significant role. As nuclear model framework we use the projected
QRPA (PQRPA) and show that the number projection plays a crucial role in
removing the degeneracy between the proton-neutron two quasiparticle states at
the level of the mean field. Comparison is done with both the experimental data
and the previous shell model calculations. Possible consequences of the present
study on the determination of the neutrino oscillation
probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the
previous manuscript, the results and final conclusions remain unalterable. It
has been accepted for publication as a Regular Article in Physical Review
- …