1,804 research outputs found

    A 128K-bit CCD buffer memory system

    Get PDF
    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications

    Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints

    Full text link
    We discuss data analysis techniques that can be used in the search for gravitational wave bursts from cosmic strings. When data from multiple interferometers are available, we describe consistency checks that can be used to greatly reduce the false alarm rates. We construct an expression for the rate of bursts for arbitrary cosmic string loop distributions and apply it to simple known solutions. The cosmology is solved exactly and includes the effects of a late-time acceleration. We find substantially lower burst rates than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect field theoretic cosmic strings with the usual loop sizes, though it may detect cosmic superstrings as well as cosmic strings and superstrings with non-standard loop sizes (which may be more realistic). In the absence of a detection, we show how to set upper limits based on the loudest event. Using Initial LIGO sensitivity curves, we show that these upper limits may result in interesting constraints on the parameter space of theories that lead to the production of cosmic strings.Comment: Replaced with version accepted for publication in PR

    GravEn: Software for the simulation of gravitational wave detector network response

    Full text link
    Physically motivated gravitational wave signals are needed in order to study the behaviour and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line of sight, location of the source in the sky, etc. Supported interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill

    Sequestration of quaternary ammonium compounds in soil and its relevance for the proliferation of antibiotic resistance in the environment

    Get PDF
    Quaternary ammonium compounds (QACs) are a group of surface-active, biocidal, high production volume chemicals. In the agricultural sector, their applications are especially broad and range from disinfectants and detergents in animal husbandry to their use as adjuvants in pesticide formulations. Inputs of QACs into agroecosystems are potentially high where manures, sewage sludge or wastewater are applied to the farmer’s fields for nutrient recycling. The presence of QACs in the environment has frequently been inflicted in the co-selection for antibiotic resistance genes (ARGs) with unforeseeable risks for environmental and human health [1]–[3]. The selection of ARGs depends on concentrations of QACs in bio-accessible form and the persistence of these compounds. However, a comprehensive overview on i) predicted & measured concentrations of QACs in soils including their analysis, ii) mechanisms of their sequestration in soils based on their physicochemical and structural properties, and iii) the implications of the concentrations and the fate of QACs in soils for the proliferation of ARGs in the environment is missing. Based on a review of these topics, we propose that QACs are sequestered in the interlayer regions of clay minerals in soils, which reduces their acute toxicity, but increases their persistence. The slow release of QACs from the interlayer regions may maintain concentrations levels in soil solution that are large enough to co-select for antibiotic resistant soil bacteria promoting the proliferation of ARGs in the environment

    Non-Markovian large amplitude motion and nuclear fission

    Full text link
    The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many body system, a set of coupled dynamical equations for the collective classical variables and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed. The approach is applied to the descant of the nucleus from the fission barrier.Comment: 9 pages and 3 figure

    Tree species driving functional properties of mobile organic matter in throughfall and forest floor solutions of beech, spruce and pine forests

    Get PDF
    The chemical nature of mobile organic matter is a prerequisite for advancing our understanding of the C and nutrient cycling and other forest ecosystem processes. Tree species differ in leaf composition (e.g. nutrient, polyphenol content) and leaf litter quality, which in turn affects a variety of ecosystem processes. However, the composition of OM derived from living plant material via throughfall (TF) and its compositional fate traversing the forest floor (FF) is insufficiently understood. Are there tree-species specific differences in functional properties (e.g. aromaticity) of OM in TF and FF solutions collected from pine, spruce and different beech stands? And if yes- how do functional properties change with tree species and ecosystem compartment (throughfall vs. forest floor)? We addressed these questions by applying solid-state C-13 NMR spectroscopy to TF and FF solutions from European beech forests of the three DFG “Biodiversity Exploratories”, from Norway spruce sites of the Hainich-Dün-Exploratory and Scots pine stands in East-Thuringia. C-13 NMR spectroscopy revealed a homogeneous composition of TF-DOM under beech between the three Exploratories and exhibited remarkable tree-species related differences in DOM composition: Compared to spruce and pine, TF-DOM under beech showed higher intensities of aromatic and phenolic C (beech > pine > spruce) and lower ones of alkyl-C (pine ≈ spruce > beech). Consequently, beech TF exhibited higher aromaticity values and lower alkyl/O-alkyl ratios (i.e. extent of decomposition) in comparison to coniferous TF-DOM. FF-DOM under beech was very similar between the three “Biodiversity Exploratories” and surprisingly analog to FF-DOM under spruce, while under pine higher intensities of aromatic and phenolic C and alkyl-C (pine > beech ≈ spruce) and lower O-alkyl-C signals were observed. Thus, pine FF-DOM exhibited the highest values for both aromaticity (28%) and decomposition (0.87). In essence, tree-species effects became most notable for the composition and functionality of DOM in TF exhibiting consistently the highest aromatic and phenolic C signals for the beech sites. In view of the allelopathic effectiveness of phenolic compounds, the results might point to an increased allelopathic potential of beech TF, which successfully impairs competing plants and organisms and hence alter ecosystem processes and functioning. In the end, the ecological functions of DOM in ecosystems are still imperfectly understood

    Investigating Self-Directed Learning Dimensions: Adapting the Bouchard Framework

    Get PDF
    Self-Directed Learning (SDL) is gaining interest, as online learning is increasingly learner-centered. FutureLearn courses provide an array of online interactions and content deliveries, which have allowed the authors to investigate a diversity of SDL elements. This preliminary research examines the SDL taking place in three FutureLearn courses, and categorises those learner actions into meaningful elements and dimensions for the learners. The SDL framework by Bouchard [1] is used to interpret the self-reported findings coming from active learners. The research uses a grounded theory approach to look for learner experiences related to four dimensions (algorithmic, conative, semiotic, and economic) of the Bouchard [1] framework, and to discover new dimensions. Various research instruments are used: online surveys, learning logs, and one-on-one interviews, all collected pre-, during, or post-course. The initial adaptation of Bouchard’s framework offers insights into SDL, its meaning, and value as perceived by the learners

    Evaluating the Impact of Cardiopulmonary Bypass Priming Fluids on Bleeding After Pediatric Cardiac Surgery:A Systematic Review and Meta-Analysis

    Get PDF
    OBJECTIVES: Cardiopulmonary bypass (CPB) predisposes young children to coagulopathy. The authors evaluated possible effects of CPB priming fluids on perioperative bleeding in pediatric cardiac surgery.DESIGN: Meta-analysis and systematic review of previously published studies.SETTING: Each study was conducted in a surgical center or intensive care unit.PARTICIPANTS: Studies investigating patients &lt;18 years without underlying hematologic disorders were included.INTERVENTIONS: The authors evaluated randomized controlled trials (RCTs) published between 1980 and 2020 on MEDLINE, EMBASE, PubMed, and CENTRAL databases. The primary outcome was postoperative bleeding; secondary endpoints included blood product transfusion, mortality, and safety.MEASUREMENTS AND MAIN RESULTS: Twenty eligible RCTs were analyzed, with a total of 1,550 patients and a median of 66 patients per study (range 20-200). The most frequently assessed intervention was adding fresh frozen plasma (FFP) to the prime (8/20), followed by albumin (5/20), artificial colloids (5/20), and blood-based priming solutions (3/20). Ten studies with 771 patients evaluated blood loss at 24 hours in mL/kg and were included in a meta-analysis. Most of them investigated the addition of FFP to the priming fluid (7/10). No significant difference was found between intervention and control groups, with a mean difference of -0.13 (-2.61 to 2.34), p = 0.92, I2 = 69%. Further study endpoints were described but their reporting was too heterogeneous to be quantitatively analyzed.CONCLUSIONS: This systematic review of current evidence did not show an effect of different CPB priming solutions on 24-hour blood loss. The analysis was limited by heterogeneity within the dataset regarding population, type of intervention, dosing, and the chosen comparator, compromising any conclusions.</p

    Coincidence probability as a measure of the average phase-space density at freeze-out

    Get PDF
    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.Comment: LateX, 9 pages, no figure
    corecore