1,605 research outputs found

    Thomas-Fermi Approximation for a Condensate with Higher-order Interactions

    Full text link
    We consider the ground state of a harmonically trapped Bose-Einstein condensate within the Gross-Pitaevskii theory including the effective-range corrections for a two-body zero-range potential. The resulting non-linear Schr\"odinger equation is solved analytically in the Thomas-Fermi approximation neglecting the kinetic energy term. We present results for the chemical potential and the condensate profiles, discuss boundary conditions, and compare to the usual Thomas-Fermi approach. We discuss several ways to increase the influence of effective-range corrections in experiment with magnetically tunable interactions. The level of tuning required could be inside experimental reach in the near future.Comment: 8 pages, RevTex4 format, 5 figure

    Definitions of Tillage Systems for Corn

    Get PDF
    If tillage is defined as the mechanical manipulation of soil, it follows, then, that a tillage system would be the sequence of soil-manipulation operations performed in producing a crop. Today, however, such a definition is recognized as inadequate. We know, for instance, that the management of non-harvested plant tissue (i.e., residue) affects both crop production and soil erosion, and that field operations in which the soil is not tilled have a marked influence on soil condition. Therefore, in this publication, a tillage system is the sequence of all operations involved in producing the crop, including soil manipulation, harvesting, chopping or shredding of residue, application of pesticides and fertilizers, etc. But before describing and comparing the various tillage systems for corn, some terminologies and possible points of confusion need to be addressed. These have to do with primary vs. secondary tillage and the different ways in which similar tillage systems could be defined. PRIMARY AND SECONDARY TILLAGE For many tillage systems, the specific operations can be separated into primary and secondary. Primary tillage loosens and fractures the soil to reduce soil strength and to bring or mix residues and fertilizers into the tilled layer. The implements ( tools ) used for primary tillage include moldboard, chisel and disk plows; heavy tandem, offset and one -way disks; subsoilers; and heavy -duty, powered rotary tillers. These tools usually operate deeper and produce a rougher soil surface than do secondary tillage tools; however, they differ from each other as to amount of soil manipulation and amount of residue left on or near the surface. Secondary tillage is used to kill weeds, cut and cover crop residue, incorporate herbicides and prepare a seedbed. The tools include light- and medium -weight disks, field cultivators, rotary hoes, drags, powered and unpowered harrows and rotary tillers, rollers, ridge- or bed -forming implements, and numerous variations or combinations of these. They operate at a shallower depth than primary tillage tools and provide additional soil pulverization. Equipment that permits primary and/or secondary tillage plus planting in a single operation is also available

    Detection of gravitational waves from the QCD phase transition with pulsar timing arrays

    Full text link
    If the cosmological QCD phase transition is strongly first order and lasts sufficiently long, it generates a background of gravitational waves which may be detected via pulsar timing experiments. We estimate the amplitude and the spectral shape of such a background and we discuss its detectability prospects.Comment: 7 pages, 5 figs. Version accepted by PR

    Incorporating Radial Flow in the Lattice Gas Model for Nuclear Disassembly

    Get PDF
    We consider extensions of the lattice gas model to incorporate radial flow. Experimental data are used to set the magnitude of radial flow. This flow is then included in the Lattice Gas Model in a microcanonical formalism. For magnitudes of flow seen in experiments, the main effect of the flow on observables is a shift along the E/AE^*/A axis.Comment: Version accepted for publication in Phys. Rev. C, Rapid Communicatio

    Using learning environments as a metaphor for educational change

    Get PDF
    Purpose – The purpose of this paper is to show that the online learning environment can be seen as the means by which higher education can explore the challenges and opportunities raised by online and digital society. Design/methodology/approach – The paper argues that the online learning environment can be seen as a metaphor for how universities respond to the requirements and challenges of the digital age. Current learning management systems (LMSs) are examined, and compared with the values found in web 2.0 and social media. Current thinking on pedagogy for online learning is then examined. The SocialLearn project at the Open University in the UK is then explained, which seeks to create a disaggregated, decentralised, social system for learners. Findings – The conclusion from the analysis is that there is a conflict between the centralised learning management system (LMS) and the requirements of online pedagogy. The traditional LMS can be seen as embodying the wrong metaphor, that of the traditional classroom. The paper concludes by arguing that such learning environments will be more useful to higher education in coming to understand its response to many of the changes being seen in society, which are facilitated by the new technologies. Originality/value – The paper provides a framework for considering LMSs and their relation to universities and pedagogy, and an argument for the promotion of more decentralised systems

    Inhomogeneous Nucleation of Quark-Gluon Plasma in High Energy Nuclear Collisions

    Get PDF
    We estimate the probability that a hard nucleon-nucleon collision is able to nucleate a seed of quark--gluon plasma in the surrounding hot and dense hadronic matter formed during a central collision of two large nuclei at AGS energies. The probability of producing at least one such seed is on the order of 1-100\%. We investigate the influence of quark--gluon plasma formation on the observed multiplicity distribution and find that it may lead to noticable structure in the form of a bump or shoulder.Comment: 16 pages, latex and 12 ps figures available on reques

    Neutron Drops and Skyrme Energy-Density Functionals

    Full text link
    The Jπ^{\pi}=0+^+ ground state of a drop of 8 neutrons and the lowest 1/2^- and 3/2^- states of 7-neutron drops, all in an external well, are computed accurately with variational and Green's function Monte Carlo methods for a Hamiltonian containing the Argonne v18v_{18} two-nucleon and Urbana IX three-nucleon potentials. These states are also calculated using Skyrme-type energy-density functionals. Commonly used functionals overestimate the central density of these drops and the spin-orbit splitting of 7-neutron drops. Improvements in the functionals are suggested

    Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays

    Full text link
    In the next decade gravitational waves might be detected using a pulsar timing array. In an effort to develop optimal detection strategies for stochastic backgrounds of gravitational waves in generic metric theories of gravity, we investigate the overlap reduction functions for these theories and discuss their features. We show that the sensitivity to non-transverse gravitational waves is greater than the sensitivity to transverse gravitational waves and discuss the physical origin of this effect. We calculate the overlap reduction functions for the current NANOGrav Pulsar Timing Array (PTA) and show that the sensitivity to the vector and scalar-longitudinal modes can increase dramatically for pulsar pairs with small angular separations. For example, the J1853+1303-J1857+0943 pulsar pair, with an angular separation of about 3 degrees, is about 10^4 times more sensitive to the longitudinal component of the stochastic background, if it is present, than the transverse components.Comment: 13 pages, 7 figures, published in Physical Review D 85 (082001), 201

    Stability of bubble nuclei through Shell-Effects

    Get PDF
    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. Estimates demonstrate that the calculated shell effects for certain magic numbers of constituents are probably large enough to produce stability against fission, alpha-, and beta-decay. No bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include
    corecore