25 research outputs found

    The Intricacies of Identifying Equatorial Waves

    Get PDF
    Equatorial waves (EWs) are synoptic- to planetary-scale propagating disturbances at low latitudes with periods from a few days to several weeks. Here, this term includes Kelvin waves, equatorial Rossby waves, mixed Rossby–gravity waves, and inertio-gravity waves, which are well described by linear wave theory, but it also other tropical disturbances such as easterly waves and the intraseasonal Madden–Julian Oscillation with more complex dynamics. EWs can couple with deep convection, leading to a substantial modulation of clouds and rainfall. EWs are amongst the dynamic features of the troposphere with the longest intrinsic predictability, and models are beginning to forecast them with an exploitable level of skill. Most of the methods developed to identify and objectively isolate EWs in observations and model fields rely on (or at least refer to) the adiabatic, frictionless linearized primitive equations on the sphere or the shallow-water system on the equatorial -plane. Common ingredients to these methods are zonal wave-number–frequency filtering (Fourier or wavelet) and/or projections onto predefined empirical or theoretical dynamical patterns. This paper gives an overview of six different methods to isolate EWs and their structures, discusses the underlying assumptions, evaluates the applicability to different problems, and provides a systematic comparison based on a case study (February 20–May 20, 2009) and a climatological analysis (2001–2018). In addition, the influence of different input fields (e.g., winds, geopotential, outgoing long-wave radiation, rainfall) is investigated. Based on the results, we generally recommend employing a combination of wave-number–frequency filtering and spatial-projection methods (and of different input fields) to check for robustness of the identified signal. In cases of disagreement, one needs to carefully investigate which assumptions made for the individual methods are most probably not fulfilled. This will help in choosing an approach optimally suited to a given problem at hand and avoid misinterpretation of the results

    Beobachtungen am Spechtflnken Cactospiza pallida (Sclater und Salvin)

    No full text

    Precipitation over Indochina during the monsoon transition: modulation by Indian Ocean and ENSO regimes

    No full text
    The interannual variability of precipitation during the summer monsoon transition over the Indochina Peninsula (ICP) is substantially influenced by the sea surface temperature anomalies (SSTAs) of the tropical ocean, showing a robust relationship between April and May (AM) precipitation and the El Nino/Southern Oscillation (ENSO) phenomenon. Dynamic composites and statistical analyses supported by model experiments indicate that the observed anomalous AM precipitation is associated with circulation anomalies over the Pacific and, in addition, affected by the response to the tropical SSTAs forcing from the Indian Ocean (IO): (i) Less (greater) than normal AM precipitation over the ICP occurs during the El Nino (La Nina) years, which is consistent with late (early) Bay of Bengal (BoB) summer monsoon onset. (ii) The dry (wet) AM precipitation years are associated with the anomalous western North Pacific (WNP) anti-cyclone (cyclone) induced by El Nino (La Nina) concurrent with the anti-cyclone (cyclone) over the BoB, suppressing (favoring) the meridional flow of warm and moist air from the Pacific and Indian ocean and thus cutting (providing) moisture supply for the ICP. (iii) The reduced tropical convective activity over Maritime Continent (MC) is related to the weakened local Hadley circulation concurrent with the weakened overturning Walker circulation, and favors a drier than normal AM precipitation over the ICP, to which the wetter years are opposite. These symmetric atmospheric circulation patterns characterizing dry and wet AM precipitation over the ICP are also reproduced by numerical experiments with an atmospheric general circulation model
    corecore