67 research outputs found

    Mycoplasma hominis deep wound infection after neuromuscular scoliosis surgery: the use of real-time polymerase chain reaction (PCR)

    Get PDF
    Mycoplasma hominis is a commensal of the genitourinary tract. It mostly causes infections to associated structures of this system; however, occasionally it is a pathogen in nongenitourinary tract infections. Since, M. hominis strains require special growth conditions and cannot be Gram stained, they may be missed or delay diagnosis. This report describes a deep wound infection caused by M. hominis after neuromuscular scoliosis surgery; M. hominis was recovered by real-time polymerase chain reaction (PCR). An awareness of the role of M. hominis as an extragenital pathogen in musculoskeletal infections, especially in neuromuscular scoliosis, being a high-risk group for postoperative wound infection, it is necessary to identify this pathogen. Real-time PCR for postoperative deep wound infection, in patients with a history of genitourinary infections, decreases the delay in diagnosis and treatment. In these cases rapid real-time PCR on deep cultures should be considered

    Three-dimensional Numerical Modeling and Computational Fluid Dynamics Simulations to Analyze and Improve Oxygen Availability in the AMC Bioartificial Liver

    Get PDF
    A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each configuration to gain insight in fluid flow, shear stress distribution and oxygen availability in the AMC-BAL. We assessed the function of the internal oxygenator, the effect of changes in hepatocyte oxygen consumption parameters in time and the effect of the change from an experimental to a clinical setting. In addition, different methodologies were studied to improve cellular oxygen availability, i.e. external oxygenation of culture medium, culture medium flow rate, culture gas oxygen content (pO(2)) and the number of oxygenation capillaries. Standard operating conditions did not adequately provide all hepatocytes in the AMC-BAL with sufficient oxygen to maintain O(2) consumption at minimally 90% of maximal uptake rate. Cellular oxygen availability was optimized by increasing the number of gas capillaries and pO(2) of the oxygenation gas by a factor two. Pressure drop over the AMC-BAL and maximal shear stresses were low and not considered to be harmful. This information can be used to increase cellular efficiency and may ultimately lead to a more productive AMC-BAL

    Profiling the Impact of Medium Formulation on Morphology and Functionality of Primary Hepatocytes in vitro

    Get PDF
    The characterization of fully-defined in vitro hepatic culture systems requires testing of functional and morphological variables to obtain the optimal trophic support, particularly for cell therapeutics including bioartificial liver systems (BALs). Using serum-free fully-defined culture medium formulations, we measured synthetic, detoxification and metabolic variables of primary porcine hepatocytes (PPHs) - integrated these datasets using a defined scoring system and correlated this hepatocyte biological activity index (HBAI) with morphological parameters. Hepatic-specific functions exceeded those of both primary human hepatocytes (PHHs) and HepaRG cells, whilst retaining biotransformation potential and in vivo-like ultrastructural morphology, suggesting PPHs as a potential surrogate for PHHs in various biotech applications. The HBAI permits assessment of global functional capacity allowing the rational choice of optimal trophic support for a defined operational task (including BALs, hepatocellular transplantation, and cytochrome P450 (CYP450) drug metabolism studies), mitigates risk associated with sub-optimal culture systems, and reduces time and cost of research and therapeutic applications

    Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Get PDF
    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution

    Protein-Functionalized Polymer Brushes

    No full text
    A new strategy for the prepn. of protein-functionalized polymer brushes is reported, which is based on a combination of surface-initiated atom transfer radical polymn. (ATRP), p-nitrophenyl chloroformate activation of the surface hydroxyl groups, and subsequent O6-benzylguanine (BG) functionalization. The BG-functionalized brushes are used to chemoselectively immobilize O6-alkylguanine-DNA-alkyltransferase (AGT) fusion proteins with a defined orientation and surface d. These protein-modified polymer brushes are attractive candidates for the development of protein microarrays. [on SciFinder (R)

    The multiscale boiling investigation on-board the International Space Station

    Full text link
    This publication lays the foundation for the description of the Multiscale Boiling Experiment, which was conducted within two measurement campaigns on the International Space Station between 2019 and 2021. The experiment addresses fundamental questions about two-phase heat transfer during boiling processes. For this purpose, single or few subsequential bubbles are selectively ignited on a heated substrate using a short laser pulse. A detailed investigation of the phenomena is possible, as the boiling process is temporally slowed down and spatially enlarged in microgravity. Within the Multiscale Boiling Project, the undisturbed growth of the bubbles, the influence of a shear flow, and the influence of an electric field are investigated within the same test facility using FC-72 as working fluid. Within the project, thirteen research groups from eight countries are collaborating. Over 3000 data sets have been generated over an 11-month measurement period. In the context of this publication, besides the motivation and necessity of such investigations, the basic structure of the experiment, the objectives of the investigations, and the organization are described. Finally, first results of the investigations are presented. Therefore, this publication has the primary aim to serve as a basis for many further planned publications and present the project as a whole
    corecore