1,050 research outputs found
Tema Con Variazioni: Quantum Channel Capacity
Channel capacity describes the size of the nearly ideal channels, which can
be obtained from many uses of a given channel, using an optimal error
correcting code. In this paper we collect and compare minor and major
variations in the mathematically precise statements of this idea which have
been put forward in the literature. We show that all the variations considered
lead to equivalent capacity definitions. In particular, it makes no difference
whether one requires mean or maximal errors to go to zero, and it makes no
difference whether errors are required to vanish for any sequence of block
sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl
Alice: The Rosetta Ultraviolet Imaging Spectrograph
We describe the design, performance and scientific objectives of the
NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet
rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging
spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will
be the first UV spectrograph to study a comet at close range. It is designed to
obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A
spectral band with a spectral resolution between 8 A and 12 A for extended
sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an
off-axis telescope feeding a 0.15-m normal incidence Rowland circle
spectrograph with a concave holographic reflection grating. The imaging
microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr
and CsI) and employs a 2 D delay-line readout array. The instrument is
controlled by an internal microprocessor. During the prime Rosetta mission,
ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus,
and the nucleus/coma coupling; during cruise to the comet, ALICE will make
observations of the mission's two asteroid flyby targets and of Mars, its
moons, and of Earth's moon. ALICE has already successfully completed the
in-flight commissioning phase and is operating normally in flight. It has been
characterized in flight with stellar flux calibrations, observations of the
Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004
and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing
campaignComment: 11 pages, 7 figure
Decision and function problems based on boson sampling
Boson sampling is a mathematical problem that is strongly believed to be
intractable for classical computers, whereas passive linear interferometers can
produce samples efficiently. So far, the problem remains a computational
curiosity, and the possible usefulness of boson-sampling devices is mainly
limited to the proof of quantum supremacy. The purpose of this work is to
investigate whether boson sampling can be used as a resource of decision and
function problems that are computationally hard, and may thus have
cryptographic applications. After the definition of a rather general
theoretical framework for the design of such problems, we discuss their
solution by means of a brute-force numerical approach, as well as by means of
non-boson samplers. Moreover, we estimate the sample sizes required for their
solution by passive linear interferometers, and it is shown that they are
independent of the size of the Hilbert space.Comment: Close to the version published in PR
A high resolution, high frame rate detector based on a microchannel plate read out with the Medipix2 counting CMOS pixel chip.
The future of ground-based optical astronomy lies with advancements in adaptive optics (AO) to overcome the limitations that the atmosphere places on high resolution imaging. A key technology for AO systems on future very large telescopes are the wavefront sensors (WFS) which detect the optical phase error and send corrections to deformable mirrors. Telescopes with >30 m diameters will require WFS detectors that have large pixel formats (512x512), low noise (<3 e-/pixel) and very high frame rates (~1 kHz). These requirements have led to the idea of a bare CMOS active pixel device (the Medipix2 chip) functioning in counting mode as an anode with noiseless readout for a microchannel plate (MCP) detector and at 1 kHz continuous frame rate. First measurement results obtained with this novel detector are presented both for UV photons and beta particles
Random walks - a sequential approach
In this paper sequential monitoring schemes to detect nonparametric drifts
are studied for the random walk case. The procedure is based on a kernel
smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson
estimator and its as- sociated sequential partial sum process under
non-standard sampling. The asymptotic behavior differs substantially from the
stationary situation, if there is a unit root (random walk component). To
obtain meaningful asymptotic results we consider local nonpara- metric
alternatives for the drift component. It turns out that the rate of convergence
at which the drift vanishes determines whether the asymptotic properties of the
monitoring procedure are determined by a deterministic or random function.
Further, we provide a theoretical result about the optimal kernel for a given
alternative
Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ Fornacis
We present new high-speed, multi-observatory, multi-instrument photometry of
the eclipsing polar UZ For in order to measure precise mid-eclipse times with
the aim of detecting any orbital period variations. When combined with
published eclipse times and archival data spanning ~27 years, we detect
departures from a linear and quadratic trend of ~60 s. The departures are
strongly suggestive of two cyclic variations of 16(3) and 5.25(25) years. The
two favoured mechanisms to drive the periodicities are either two giant
extrasolar planets as companions to the binary (with minimum masses of
6.3(1.5)M(Jupiter) and 7.7(1.2)M(Jupiter)) or a magnetic cycle mechanism (e.g.
Applegate's mechanism) of the secondary star. Applegate's mechanism would
require the entire radiant energy output of the secondary and would therefore
seem to be the least likely of the two, barring any further refinements in the
effect of magnetic fieilds (e.g. those of Lanza et al.). The two planet model
can provide realistic solutions but it does not quite capture all of the
eclipse times measurements. A highly eccentric orbit for the outer planet would
fit the data nicely, but we find that such a solution would be unstable. It is
also possible that the periodicities are driven by some combination of both
mechanisms. Further observations of this system are encouraged.Comment: 10 pages, 4 figures, 2 table
Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma
<p>Abstract</p> <p>Background</p> <p>Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients.</p> <p>Results</p> <p>We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value << 0.0001). Using the current tissue collection and 5-fold cross validation, the four most significant loci (CDKN2A EX2, CDX2, HOXA1 and OPCML) individually distinguish lung adenocarcinoma from non-cancer lung with a sensitivity of 67–86% and specificity of 74–82%. DNA methylation of these loci did not differ significantly based on gender, race, age or tumor stage, indicating their wide applicability as potential lung adenocarcinoma markers. We applied random forests to determine a good classifier based on a subset of our loci and determined that combined use of the same four top markers allows identification of lung cancer tissue from non-lung cancer tissue with 94% sensitivity and 90% specificity.</p> <p>Conclusion</p> <p>The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.</p
- …