330 research outputs found
A Further Study of Linux Kernel Hugepages on A64FX with FLASH, an Astrophysical Simulation Code
We present an expanded study of the performance of FLASH when using Linux
Kernel Hugepages on Ookami, an HPE Apollo 80 A64FX platform. FLASH is a
multi-scale, multi-physics simulation code written principally in modern
Fortran and makes use of the PARAMESH library to manage a block-structured
adaptive mesh. Our initial study used only the Fujitsu compiler to utilize
standard hugepages (hp), but further investigation allowed us to utilize hp for
multiple compilers by linking to the Fujitsu library libmpg and transparent
hugepages (thp) by enabling it at the node level. By comparing the results of
hardware counters and in-code timers, we found that hp and thp do not
significantly impact the runtime performance of FLASH. Interestingly, there is
a significant reduction in the TLB misses, differences in cache and memory
access counters, and strange behavior is observed when using thp.Comment: 10 pages, 2 figures, 7 tables. Proceedings for Practice and
Experience in Advanced Research Computing (PEARC '23), July 23--27, 2023,
Portland, OR, US
Compensation of Strong Thermal Lensing in High Optical Power Cavities
In an experiment to simulate the conditions in high optical power advanced
gravitational wave detectors such as Advanced LIGO, we show that strong thermal
lenses form in accordance with predictions and that they can be compensated
using an intra-cavity compensation plate heated on its cylindrical surface. We
show that high finesse ~1400 can be achieved in cavities with internal
compensation plates, and that the cavity mode structure can be maintained by
thermal compensation. It is also shown that the measurements allow a direct
measurement of substrate optical absorption in the test mass and the
compensation plate.Comment: 8 page
A thermionic electron gun to characterize silicon drift detectors with electrons
The TRISTAN detector is a new detector for electron spectroscopy at the Karlsruhe Tritium Neutrino (KATRIN) experiment. The semiconductor detector utilizes the silicon drift detector technology and will enable the precise measurement of the entire tritium beta-decay electron spectrum. Thus, a significant fraction of the parameter space of potential neutrino mass eigenstates in the keV-mass regime can be probed. We developed a custom electron gun based on the effect of thermionic emission to characterize the TRISTAN detector modules with mono -energetic electrons before installation into the KATRIN beamline. The electron gun provides an electron beam with up to 25 keV kinetic energy and an electron rate in the order of 10 5 electrons per second. This manuscript gives an overview of the design and commissioning of the electron gun. In addition, we will shortly discuss a first measurement with the electron gun to characterize the electron response of the TRISTAN detector
Ookami: An A64FX Computing Resource
We present a look at Ookami, a project providing community access to a testbed supercomputer with the ARM-based A64FX processors developed by a collaboration between RIKEN and Fujitsu and deployed in the Japanese supercomputer Fugaku. We provide an overview of the project and details of the hardware, and describe the user base and education/training program. We present highlights from previous performance studies of two astrophysical simulation codes and present a strong scaling study of a full 3D supernova simulation as an example of the the machine’s capability
Dermanyssus gallinae in layer farms in Kosovo: a high risk for salmonella prevalence
Background
The poultry red mite (PRM), Dermanyssus gallinae (D.g.) is a serious ectoparasitic pest of poultry and potential pathogen vector. The prevalence of D. g. and the prevalence of Salmonella spp. within mites on infested laying poultry farms were investigated in Kosovo.
Findings
In total, 14 populated layer farms located in the Southern Kosovo were assessed for D. g. presence. Another two farms in this region were investigated 6 months after depopulation. Investigated flocks were all maintained in cages, a common housing system in Kosovo. A total of eight farms were found to be infested with D. g. (50%) at varying levels, including the two depopulated farms. The detection of Salmonella spp. from D. g. was carried out using PCR. Out of the eight layer farms infested with D. g., Salmonella spp. was present in mites on three farms (37.5%).
Conclusions
This study confirms the high prevalence of D. g. in layer flocks in Kosovo and demonstrates the link between this mite and the presence of Salmonella spp. on infested farms
Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
Both theoretical and experimental results for the dynamics of photoexcited
electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and
Ni are presented. A model for the dynamics of excited electrons is developed,
which is based on the Boltzmann equation and includes effects of
photoexcitation, electron-electron scattering, secondary electrons (cascade and
Auger electrons), and transport of excited carriers out of the detection
region. From this we determine the time-resolved two-photon photoemission
(TR-2PPE). Thus a direct comparison of calculated relaxation times with
experimental results by means of TR-2PPE becomes possible. The comparison
indicates that the magnitudes of the spin-averaged relaxation time \tau and of
the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation
times for the different ferromagnetic transition metals result not only from
density-of-states effects, but also from different Coulomb matrix elements M.
Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated
reference
Spin-filter effect of the europium chalcogenides: An exactly solved many-body model
A model Hamiltonian is introduced which considers the main features of the
experimental spin filter situation as s-f interaction, planar geometry and the
strong external electric field. The proposed many-body model can be solved
analytically and exactly using Green functions.
The spin polarization of the field-emitted electrons is expressed in terms of
spin-flip probabilities, which on their part are put down to the exactly known
dynamic quantities of the system.
The calculated electron spin polarization shows remarkable dependencies on
the electron velocity perpendicular to the emitting plane and the strength of
s-f coupling. Experimentally observed polarization values of about 90% are well
understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures;
http://orion.physik.hu-berlin.de
Long Wavelength Anomalous Diffusion Mode in the 2D XY Dipole Magnet
In 2D XY ferromagnet the dipole force induces a strong interaction between
spin-waves in the long-wavelength limit. The major effect of this interaction
is the transformation of a propagating spin-wave into a diffusion mode. We
study the anomalous dynamics of such diffusion modes. We find that the
Janssen-De Dominics functional, which governs this dynamics, approaches the
non-Gaussian fixed-point. A spin-wave propagates by an anomalous anisotropic
diffusion with the dispersion relation: and
, where and
. The low-frequency response to the external magnetic field
is found.Comment: 34 pages, RevTeX, 2 .ps figures, the third figure is available upon
reques
Experimental evidence of three-dimensional acoustic propagation caused by nonlinear internal waves
Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 118 (2005): 723-734, doi:10.1121/1.1942428.The 1995 SWARM experiment collected high quality environmental and acoustic data. One goal was to investigate nonlinear internal wave effects on acoustic signals. This study continues an investigation of broadband airgun data from the two southwest propagation tracks. One notable feature of the experiment is that a packet of nonlinear internal waves crossed these tracks at two different incidence angles. Observed variations for the lower angle track were modeled using two-dimensional parabolic equation calculations in a previous study. The higher incidence angle is close to critical for total internal reflection, suggesting that acoustic horizontal refraction occurs as nonlinear internal waves traverse this track. Three-dimensional adiabatic mode parabolic equation calculations reproduce principal features of observed acoustic intensity variations. The correspondence between data and simulation results provides strong evidence of the actual occurrence of horizontal refraction due to nonlinear internal waves.This work was supported by an ONR Ocean Acoustics Graduate Traineeship Award and by ONR grants to Rensselaer, the University of Delaware, and the Woods Hole Oceanographic Institution
Entanglement of Atomic Ensembles by Trapping Correlated Photon States
We describe a general technique that allows for an ideal transfer of quantum
correlations between light fields and metastable states of matter. The
technique is based on trapping quantum states of photons in coherently driven
atomic media, in which the group velocity is adiabatically reduced to zero. We
discuss possible applications such as quantum state memories, generation of
squeezed atomic states, preparation of entangled atomic ensembles and quantum
information processing
- …