37 research outputs found

    Evaluation of a commercial liquid-chromatography high-resolution mass-spectrometry method for the determination of hepcidin-25

    Get PDF
    Introduction: Reliable determination of hepcidin-25, a key regulator of iron metabolism, is important. This study aimed at evaluating the performance of the Hepcidin-25 Liquid Chromatography-Tandem Mass-Spectrometry (LC-MS/MS) Kit (Immundiagnostik AG, Bensheim, Germany) for quantification of the hepcidin-25 protein. Materials and methods: Precision, accuracy, linearity, and preanalytical requirements of the liquid-chromatography high-resolution massspectrometry (LC-HR-MS) method were evaluated. The imprecision and bias acceptance criteria were defined ≤ 15%. We investigated sample stability at room temperature (RT) and after repeated freeze and thaw cycles. Additionally, we assessed serum hepcidin-25 concentrations of 165 healthy adults referred for a medical check-up. Results: The hepcidin-25 LC-MS/MS assay was linear over the concentration range of 3 – 200 ng/mL. Within- and between-run precision ranged between 1.9 – 8.6% and 5.1 – 12.4%, respectively. The mean bias of the low and high control material was - 2.7% and 2.1%, respectively. At RT, serum samples were stable for 3 h (mean bias + 0.3%). After two and three freeze and thaw cycles, hepcidin-25 concentrations showed a bias of +8.0 and + 20%, respectively. Of 165 healthy adults, 109 females had a significantly lower median of 8.42 (range: 1.00 – 60.10) ng/mL compared to 56 males with 15.76 (range: 1.50 – 60.50) ng/mL (P = 0.002). Conclusions: The hepcidin-25 LC-MS/MS kit shows a broad analytical range and meets the imprecision and bias acceptance criteria of ≤ 15%. Serum samples can be stored at RT for 3 h and resist up to two freeze and thaw cycles

    Interleukin-6 is associated with tryptophan metabolism and signs of depression in individuals with carbohydrate malabsorption

    Get PDF
    The aim of the present study was to investigate possible associations between interleukin-6 (IL-6), interferon-gamma (INF-γ), tumor necrosis factor-alpha (TNF-α), lactoferrin and lipopolysaccharide binding protein (LBP) with TRP metabolism and signs of depression in a large cohort of outpatients referred for carbohydrate malabsorption testing. Serum concentrations of IL-6, INF-γ, TNF-α, lactoferrin, LBP, tryptophan (TRP), kynurenine (KYN) and kynuric acid were determined in 250 adults referred for lactose and fructose malabsorption testing. All participants filled out the Beck Depression Inventory (BDI). Serum IL-6 levels were positively correlated with the BDI score (p = 0.001, ρ = 0.205) and indicators of TRP metabolism (KYN/TRP ratio, KYN) (P-values 13 showed significantly higher IL-6 serum levels (1.7 [1.0 – 2.8] vs. 1.1 [0.8 – 1.7] pg/mL, p < 0.001) compared to 115 individuals with a BDI score ≤ 13. LBP showed a positive correlation with the KYN/TRP ratio (p = 0.005, ρ = 0.177). IL-6 and LBP were associated with indicators of TRP metabolism. IL-6 was found to be linked to signs of depression. Individuals with the presence of depressive symptoms showed higher serum IL-6 levels compared to individuals without depressive symptoms

    Magyar Geofizika 1988

    Get PDF
    Introduction Bipolar disorder (BD) is a chronic psychiatric disease which can take most different and unpredictable courses. It is accompanied by unspecific brainstructural changes and cognitive decline. The neurobiological underpinnings of these processes are still unclear. Emerging evidence suggests that tryptophan catabolites (TRYCATs), which involve all metabolites of tryptophan towards the kynurenine (KYN) branch, are involved in the etiology as well as in the course of BD. They are proposed to be mediators of immune-inflammation and neurodegeneration. In this study we measured the levels of KYN and its main catabolites consisting of the neurotoxic hydroxykynurenine (3-HK), the more neuroprotective kynurenic acid (KYNA) and anthranilic acid (AA) and evaluated the ratios between end-products and substrates as proxies for the specific enzymatic activity (3-HK/KYN, KYNA/KYN, AA/KYN) as well as 3-HK/KYNA as a proxy for neurotoxic vs. neuroprotective end-product relation in individuals with BD compared to healthy controls (HC). Methods We took peripheral TRYCAT blood levels of 143 euthymic to mild depressive BD patients and 101 HC. For statistical analyses MANCOVA's controlled for age, sex, body mass index, cardiovascular disease and smoking were performed. Results The levels of KYNA (F=5,579; p<.05) were reduced in BD compared to HC. The enzymatic activity of the kynurenine-3-monooxygenase (KMO) reflected by the 3-HK/KYN ratio was increased in BD individuals compared to HC (F=5,394; p<.05). Additionally the ratio of 3-HK/KYNA was increased in individuals with BD compared to healthy controls (F=11,357; p<.01). Discussion In conclusion our findings subserve the concept of KYN -pathway alterations in the pathophysiology of BD. We present evidence of increased breakdown towards the neurotoxic branch in KYN metabolism even in a euthymic to mild depressive state in BD. From literature we know that depression and mania are accompanied by inflammatory states which should be capable to produce an even greater imbalance due to activation of key enzymes in the neurotoxic direction of KYN -conversion. These processes could finally be involved in the development of unspecific brain structural changes and cognitive deficits which are prevalent in BD. Further research should focus on state dependent changes in TRYCATs and its relation to cognition, brain structure and staging parameters

    Isocratic High-Performance Liquid Chromatographic Method with Ultraviolet Detection for Simultaneous Determination of Levels of Voriconazole and Itraconazole and Its Hydroxy Metabolite in Human Serum

    No full text
    A simple, specific method is presented for simultaneous determination of voriconazole and itraconazole and its metabolite, hydroxyitraconazole, in human serum using one-step liquid-liquid extraction and high-performance liquid chromatography. Linearity tests ranged from 0.1 to 8.0 μg/ml; the minimum detectable concentration was 0.03 μg/ml

    Implementation of a Dual-Column Liquid Chromatography-Tandem Mass-Spectrometry Method for the Quantification of Isavuconazole in Clinical Practice

    No full text
    Objectives Therapeutic drug monitoring (TDM) of isavuconazole, which is a novel broad-spectrum antimycoticum against invasive fungal infections, ensures an effective exposure of the drug and minimizes the risk of toxicity. This study is aimed at evaluating the analytical performance of a dual-column liquid chromatography-tandem mass-spectrometry (LC-MS/MS) method for isavuconazole quantification. Materials and Methods The method was performed on a Voyager TSQ Quantum triple quadrupole instrument equipped with an Ultimate 3000 chromatography system (Thermo Fisher Scientific, San Jose, California, United States). Analytical and preanalytical requirements of the isavuconazole LC-MS/MS method were evaluated. Sample stability measurements were performed at room temperature (RT) and in serum tubes with separator gel. Results The isavuconazole LC-MS/MS method was linear over the concentration range of 0.2 to 12.8 mg/L. The coefficient of determination (r 2) always exceeded 0.999. Within- and between-run precision ranged between 1.4 to 2.9% and 1.5 to 3.0%, the recovery between 93.9 and 102.7%. At RT, serum samples were stable for 3 days. Isavuconazole serum concentrations were significantly lower after incubation (18 hours) in serum tubes with separator gel at RT. Conclusion The dual-column isavuconazole LC-MS/MS is a reliable tool for the TDM of isavuconazole. Serum samples are stable for at least 3 days and should be collected in tubes without separator gel

    Vitamin D Metabolites and Clinical Outcome in Hospitalized COVID-19 Patients

    No full text
    (1) Background: Vitamin D, a well-established regulator of calcium and phosphate metabolism, also has immune-modulatory functions. An uncontrolled immune response and cytokine storm are tightly linked to fatal courses of COVID-19. The present retrospective study aimed to inves-tigate vitamin D status markers and vitamin D degradation products in a mixed cohort of 148 hospitalized COVID-19 patients with various clinical courses of COVID-19. (2) Methods: The serum concentrations of 25(OH)D3, 25(OH)D2, 24,25(OH)2D3, and 25,26(OH)2D3 were determined by a validated liquid-chromatography tandem mass-spectrometry method in leftover serum samples from 148 COVID-19 patients that were admitted to the University Hospital of the Medical Uni-versity of Graz between April and November 2020. Anthropometric and clinical data, as well as outcomes were obtained from the laboratory and hospital information systems. (3) Results: From the 148 patients, 34 (23%) died within 30 days after admission. The frequency of fatal outcomes did not differ between males and females. Non-survivors were significantly older than survivors, had higher peak concentrations of IL-6 and CRP, and required mechanical ventilation more frequently. The serum concentrations of all vitamin D metabolites and the vitamin D metabolite ratio (VMR) did not differ significantly between survivors and non-survivors. Additionally, the need for res-piratory support was unrelated to the serum concentrations of 25(OH)D vitamin D and the two vitamin D catabolites, as well as the VMR. (4) Conclusion: The present results do not support a relevant role of vitamin D for the course and outcome of COVID-19

    Simultaneous determination of 24,25- and 25,26-dihydroxyvitamin D3 in serum samples with liquid-chromatography mass spectrometry - A useful tool for the assessment of vitamin D metabolism.

    Full text link
    Vitamin D status is typically assessed by the measurement of 25-hydroxyvitamin D (25(OH)D). However, in selected patient groups the sole determination of 25(OH)D has been proven insufficient for this purpose. The simultaneous measurement of additional vitamin D metabolites may provide useful information for a better evaluation of the vitamin D status. Therefore, we developed and validated a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of 25(OH)D(3), 25(OH)D(2), 24,25(OH)(2)D(3) and additionally 25,26(OH)(2)D(3), which was identified with a synthesized pure substance. Pure and deuterated substances were used to prepare calibrators and internal standards for all target metabolites. Pre-analytical sample preparation comprised protein precipitation followed by liquid-liquid-extraction and derivatization with 4-Phenyl-1,2,4-triazole-3,5-dione (PTAD) using 50 µL sample volume. Samples were analyzed on an Agilent HPLC 1260 system equipped with a silica-based Kinetex® 5 µm F5 100 Å core-shell column (150 × 4.6 mm) coupled to a Sciex 4500 mass spectrometer. For all four metabolites, limit of detection (LoD) and limit of quantification (LoQ) ranged from 0.3 to 1.5 nmol/L and 1.0 to 3.1 nmol/L, respectively. Recovery varied between 76.1 % and 84.3 %. Intra- and inter-assay imprecision were <8.6 % and <11.5 %, respectively. The analysis of external and internal quality control samples showed good accuracy for 25(OH)D(3), 25(OH)D(2), 24(R),25(OH)(2)D(3) and 25,26(OH)(2)D(3). Method comparison studies with human samples that were also analyzed with two other LC-MS/MS methods showed close agreement. Finally, the present method has been shown capable of identifying patients with 24-hydroxylase deficiency, which proves its clinical utility

    Individualization of Mycophenolic Acid Therapy through Pharmacogenetic, Pharmacokinetic and Pharmacodynamic Testing

    No full text
    Mycophenolic acid (MPA) is a widely used immunosuppressive agent and exerts its effect by inhibiting inosine 5&prime;-monophosphate dehydrogenase (IMPDH), the main regulating enzyme of purine metabolism. However, significant unexplained differences in the efficacy and tolerability of MPA therapy pose a clinical challenge. Therefore, broad pharmacogenetic, pharmacokinetic, and pharmacodynamic approaches are needed to individualize MPA therapy. In this prospective cohort study including 277 renal transplant recipients, IMPDH2 rs11706052 SNP status was assessed by genetic sequencing, and plasma MPA trough levels were determined by HPLC and IMPDH enzyme activity in peripheral blood mononuclear cells (PBMCs) by liquid chromatography&ndash;mass spectrometry. Among the 277 patients, 84 were identified with episodes of biopsy-proven rejection (BPR). No association was found between rs11706052 SNP status and graft rejection (OR 1.808, and 95% CI, 0.939 to 3.479; p = 0.076). Furthermore, there was no association between MPA plasma levels and BPR (p = 0.69). However, the patients with graft rejection had a significantly higher predose IMPDH activity in PBMCs compared to the controls without rejection at the time of biopsy (110.1 &plusmn; 50.2 vs. 95.2 &plusmn; 45.4 pmol/h; p = 0.001), and relative to the baseline IMPDH activity before transplantation (p = 0.042). Our results suggest that individualization of MPA therapy, particularly through pharmacodynamic monitoring of IMPDH activity in PBMCs, has the potential to improve the clinical outcomes of transplant patients

    Comparison of two LC-MS/MS methods for the quantification of 24,25-dihydroxyvitamin D3 in patients and external quality assurance samples.

    Full text link
    peer reviewedOBJECTIVES: In-house developed liquid-chromatography mass spectrometry (LC-MS/MS) methods are used more and more frequently for the simultaneous quantification of vitamin D metabolites. Among these, 24,25-dihydroxyvitamin D3 (24,25(OH)(2)D(3)) is of clinical interest. This study assessed the agreement of this metabolite in two validated in-house LC-MS/MS methods. METHODS: 24,25(OH)(2)D(3) was measured in 20 samples from the vitamin D external quality assurance (DEQAS) program and in a mixed cohort of hospital patients samples (n=195) with the LC-MS/MS method at the Medical University of Graz (LC-MS/MS 1) and at the University of Liège (LC-MS/MS 2). RESULTS: In DEQAS samples, 24,25(OH)(2)D(3) results with LC-MS/MS 1 had a proportional bias of 1.0% and a negative systemic difference of -0.05%. LC-MS/MS 2 also showed a proportional bias of 1.0% and the negative systemic bias was -0.22%. Comparing the EQA samples with both methods, no systemic bias was found (0.0%) and the slope was 1%. The mean difference of 195 serum sample measurements between the two LC-MS/MS methods was minimal (-0.2%). Both LC-MS/MS methods showed a constant bias of 0.31 nmol/L and a positive proportional bias of 0.90%, respectively. CONCLUSIONS: This study is the first to assess the comparability of 24,25(OH)(2)D(3) concentrations in a mixed cohort of hospitalized patients with two fully validated in-house LC-MS/MS methods. Despite different sample preparation, chromatographic separation and ionization, both methods showed high precision measurements of 24,25(OH)(2)D(3). Furthermore, we demonstrate the improvement of accuracy and precision measurements of 24,25(OH)(2)D(3) in serum samples and in the DEQAS program
    corecore