50 research outputs found

    Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques

    Get PDF
    AbstractWe investigated the immunogenicity and efficacy of a bimodal prime/boost vaccine regimen given by various routes in the Simian immunodeficiency virus (SIV) rhesus monkey model for AIDS. Twelve animals were immunized with SIV DNA-vectors followed by the application of a recombinant adenovirus (rAd5) expressing the same genes either intramuscularly (i.m.) or by oropharyngeal spray. The second rAd5-application was given i.m. All vaccinees plus six controls were challenged orally with SIVmac239 12 weeks post-final immunization.Both immunization strategies induced strong SIV Gag-specific IFN-γ and T-cell proliferation responses and mediated a conservation of CD4+ memory T-cells and a reduction of viral load during peak viremia following infection. Interestingly, the mucosal group was superior to the systemic group regarding breadth and strength of SIV-specific T-cell responses and exhibited lower vector specific immune responses. Therefore, our data warrant the inclusion of mucosal vector application in a vaccination regimen which makes it less invasive and easier to apply

    Dubious effects of methadone as an "anticancer" drug on ovarian cancer cell-lines and patient-derived tumor-spheroids

    Get PDF
    Background. The opioid agonist D, L-methadone exerts analgesic effects via the mu opioid receptor, encoded by OPRM1 and therefore plays a role in chronic pain management. In preclinical tumor-models D,L-methadone shows apoptotic and chemo-sensitizing effects and was therefore hyped as an off-label "anticancer" drug without substantiation from clinical trials. Its effects in ovarian cancer (OC) are completely unexplored. Methods. We analyzed OPRM1-mRNA expression in six cisplatin-sensitive, two cisplatin-resistant OC cell-lines, 170 OC tissue samples and 12 non-neoplastic control tissues. Pro-angiogenetic, cytotoxic and apoptotic effects of D,L-methadone were evaluated in OC cell-lines and four patient-derived tumor-spheroid models. Results. OPRM1 was transcriptionally expressed in 69% of OC-tissues and in three of eight OC cell-lines. D, L-methadone exposure significantly reduced cell-viability in five OC cell-lines irrespective of OPRM1 expression. D, L-methadone, applied alone or combined with cisplatin, showed no significant effects on apoptosis or VEGF secretion in cell-lines. Notably, in two of the four sphero id models, treatment with D, L-methadone significantly enhanced cell growth (by up to 121%), especially after long-term exposure. This is consistent with the observed attenuation of the inhibitory effects of cisplatin in three spheroid models when adding D, L-methadone. The effect of methadone treatment on VEGF secretion in tumor-spheroids was inconclusive. Conclusions. Our study demonstrates that certain OC samples express OPRM1, which, however, is not a prerequisite for D, L-methadone function. As such, D,L-methadone may exert also detrimental effects by stimulating the growth of certain OC-cells and abrogating cisplatin's therapeutic effect. (C) 2022 The Authors. Published by Elsevier Inc.Peer reviewe

    Dubious effects of methadone as an “anticancer” drug on ovarian cancer cell-lines and patient-derived tumor-spheroids

    Get PDF
    BackgroundThe opioid agonist D,L-methadone exerts analgesic effects via the mu opioid receptor, encoded by OPRM1 and therefore plays a role in chronic pain management. In preclinical tumor-models D,L-methadone shows apoptotic and chemo-sensitizing effects and was therefore hyped as an off-label “anticancer” drug without substantiation from clinical trials. Its effects in ovarian cancer (OC) are completely unexplored.MethodsWe analyzed OPRM1-mRNA expression in six cisplatin-sensitive, two cisplatin-resistant OC cell-lines, 170 OC tissue samples and 12 non-neoplastic control tissues. Pro-angiogenetic, cytotoxic and apoptotic effects of D,L-methadone were evaluated in OC cell-lines and four patient-derived tumor-spheroid models.ResultsOPRM1 was transcriptionally expressed in 69% of OC-tissues and in three of eight OC cell-lines. D,L-methadone exposure significantly reduced cell-viability in five OC cell-lines irrespective of OPRM1 expression. D,L-methadone, applied alone or combined with cisplatin, showed no significant effects on apoptosis or VEGF secretion in cell-lines. Notably, in two of the four spheroid models, treatment with D,L-methadone significantly enhanced cell growth (by up to 121%), especially after long-term exposure. This is consistent with the observed attenuation of the inhibitory effects of cisplatin in three spheroid models when adding D,L-methadone. The effect of methadone treatment on VEGF secretion in tumor-spheroids was inconclusive.ConclusionsOur study demonstrates that certain OC samples express OPRM1, which, however, is not a prerequisite for D,L-methadone function. As such, D,L-methadone may exert also detrimental effects by stimulating the growth of certain OC-cells and abrogating cisplatin's therapeutic effect.</p

    Single cell immune profiling by mass cytometry of newly diagnosed chronic phase chronic myeloid leukemia treated with nilotinib

    Get PDF
    Monitoring of single cell signal transduction in leukemic cellular subsets has been proposed to provide deeper understanding of disease biology and prognosis, but has so far not been tested in a clinical trial of targeted therapy. We developed a complete mass cytometry analysis pipeline for characterization of intracellular signal transduction patterns in the major leukocyte subsets of chronic phase chronic myeloid leukemia. Changes in phosphorylated Bcr-Abl1 and the signaling pathways involved were readily identifiable in peripheral blood single cells already within three hours of the patient receiving oral nilotinib. The signal transduction profiles of healthy donors were clearly distinct from those of the patients at diagnosis. Furthermore, using principal component analysis, we could show that phosphorylated transcription factors STAT3 (Y705) and CREB (S133) within seven days reflected BCR-ABL1(IS) at three and six months. Analyses of peripheral blood cells longitudinally collected from patients in the ENEST1st clinical trial showed that single cell mass cytometry appears to be highly suitable for future investigations addressing tyrosine kinase inhibitor dosing and effect. (clinicaltrials. gov identifier: 01061177)Peer reviewe

    Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer

    Get PDF
    Background: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa

    On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver

    Get PDF
    Iron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal1. In various pathophysiological conditions, however, erythrocyte life span is severely compromised, which threatens the organism with anemia and iron toxicity2,3. Here we identify an on-demand mechanism that clears erythrocytes and recycles iron. We show that Ly-6Chigh monocytes ingest stressed and senescent erythrocytes, accumulate in the liver via coordinated chemotactic cues, and differentiate to ferroportin 1 (FPN1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1+ Tim-4neg macrophages are transient, reside alongside embryonically-derived Tim-4high Kupffer cells, and depend on Csf1 and Nrf2. The spleen likewise recruits iron-loaded Ly-6Chigh monocytes, but these do not differentiate into iron-recycling macrophages due to the suppressive action of Csf2. Inhibiting monocyte recruitment to the liver leads to kidney and liver damage. These observations identify the liver as the primary organ supporting rapid erythrocyte removal and iron recycling and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity

    Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype

    No full text
    Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer) stem cells by exploiting their dye extrusion properties, which is referred to as the “side population assay.” Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV). Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters
    corecore