1,452 research outputs found

    A 60-year international history of Antarctic subglacial lake exploration

    Get PDF
    In January 2013, the US WISSARD programme measured and sampled Lake Whillans, a subglacial water body at the edge of West Antarctica, in a clean and environmentally sensitive manner, proving the existence of microbial life beneath this part of the ice sheet. The success of WISSARD represented ben chmark in the exploration of Antarctica, made possible by a rich and diverse history of events, discoveries and discussions over the past 60 years ; ranging from geophysical measurement of subglacial lakes, to the development of scientific hypotheses concer ning these environments and the engineering solutions required to test them . In this article, I provide a personal account of this history, from the published literature and my own involvement in subglacial lake exploration over the last 20 years. I show t hat our ability to directly measure and sample subglacial water bodies in Antarctica has been made possible by a strong theme of international collaboration, at odds with the media representation of a scientific ‘race’ between nations. I also consider plan s for subglacial lake exploration and discuss how such collaboration is likely to be key to success of future research in this field

    The tectonic development and erosion of the knox subglacial sedimentary basin, East Antarctica

    No full text
    Sedimentary basins beneath the East Antarctic Ice Sheet (EAIS) have immense potential to inform models of the tectonic evolution of East Antarctica and its ice-sheet. However, even basic characteristics such as thickness and extent are often unknown. Using airborne geophysical data, we resolve the tectonic architecture of the Knox Subglacial Sedimentary Basin in western Wilkes Land. In addition, we apply an erosion restoration model to reconstruct the original basin geometry for which we resolve geometry typical of a transtensional pull-apart basin. The tectonic architecture strongly indicates formation as a consequence of the rifting of India from East Gondwana from ca. 160-130 Ma, and we suggest a spatial link with the western Mentelle Basin offshore Western Australia. The erosion restoration model shows that erosion is confined within the rift margins, suggesting that rift structure has strongly influenced the evolution of the Denman and Scott ice streams

    Greenland subglacial lakes detected by radar

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.Subglacial lakes are an established and important component of the basal hydrological system of the Antarctic ice sheets, but none have been reported from Greenland. Here we present airborne radio echo sounder (RES) measurements that provide the first clear evidence for the existence of subglacial lakes in Greenland. Two lakes, with areas ~8 and ~10 km2, are found in the northwest sector of the ice sheet, ~40 km from the ice margin, and below 757 and 809 m of ice, respectively. The setting of the Greenland lakes differs from those of Antarctic subglacial lakes, being beneath relatively thin and cold ice, pointing to a fundamental difference in their nature and genesis. Possibilities that the lakes consist of either ancient saline water in a closed system or are part of a fresh, modern open hydrological system are discussed, with the latter interpretation considered more likely.Funding was provided by NERC grant NE/ H020667. Additional support was provided by NASA grant NNX11AD33G and the G. Unger Vetlesen foundation

    Fine‐scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates

    Get PDF
    Antarctic geothermal heat flow (GHF) affects the thermal regime of ice sheets and simulations of ice and subglacial meltwater discharge to the ocean, but remains poorly constrained. We use an ice sheet model to investigate the impact of GHF anomalies on subglacial meltwater production in the Aurora Subglacial Basin, East Antarctica. We find that spatially-variable GHF fields produce more meltwater than a constant GHF with the same background mean, and meltwater production increases as the resolution of GHF anomalies increases. Our results suggest that model simulations of this region systematically underestimate meltwater production using current GHF models. We determine the minimum basal heating required to bring the basal ice temperature to the pressure melting point, which should be taken together with the scale-length of likely local variability in targeting in-situ GHF field campaigns
    corecore