14,734 research outputs found

    High efficiency deterministic Josephson Vortex Ratchet

    Full text link
    We investigate experimentally a Josephson vortex ratchet -- a fluxon in an asymmetric periodic potential driven by a deterministic force with zero time average. The highly asymmetric periodic potential is created in an underdamped annular long Josephson junction by means of a current injector providing efficiency of the device up to 91%. We measured the ratchet effect for driving forces with different spectral content. For monochromatic high-frequency drive the rectified voltage becomes quantized. At high driving frequencies we also observe chaos, sub-harmonic dynamics and voltage reversal due to the inertial mass of a fluxon.Comment: accepted by PRL. To see status click on http://134.2.74.170:88/cnt/cond-mat_0506754.htm

    Variant supercurrent multiplets

    Full text link
    In N = 1 rigid supersymmetric theories, there exist three standard realizations of the supercurrent multiplet corresponding to the (i) old minimal, (ii) new minimal and (iii) non-minimal off-shell formulations for N = 1 supergravity. Recently, Komargodski and Seiberg in arXiv:1002.2228 put forward a new supercurrent and proved its consistency, although in the past it was believed not to exist. In this paper, three new variant supercurrent multiplets are proposed. Implications for supergravity-matter systems are discussed.Comment: 11 pages; V2: minor changes in sect. 3; V3: published version; V4: typos in eq. (2.3) corrected; V5: comments and references adde

    Considerations on Super Poincare Algebras and their Extensions to Simple Superalgebras

    Get PDF
    We consider simple superalgebras which are a supersymmetric extension of \fspin(s,t) in the cases where the number of odd generators does not exceed 64. All of them contain a super Poincar\'e algebra as a contraction and another as a subalgebra. Because of the contraction property, some of these algebras can be interpreted as de Sitter or anti de Sitter superalgebras. However, the number of odd generators present in the contraction is not always minimal due to the different splitting properties of the spinor representations under a subalgebra. We consider the general case, with arbitrary dimension and signature, and examine in detail particular examples with physical implications in dimensions d=10d=10 and d=4d=4.Comment: 16 pages, AMS-LaTeX. Version to appear in the Reviews in Mathematical Physic

    Snyder noncommutative space-time from two-time physics

    Full text link
    We show that the two-time physics model leads to a mechanical system with Dirac brackets consistent with the Snyder noncommutative space. An Euclidean version of this space is also obtained and it is shown that both spaces have a dual system describing a particle in a curved space-time.Comment: 5 pages, RevTeX4. References adde

    Terahertz local oscillator sources: performance and capabilities

    Get PDF
    Frequency multiplier circuits based on planar GaAs Schottky diodes have advanced significantly in the last decade. Useful power in the >1 THz range has now been demonstrated from a complete solid-state chain. This paper will review some of the technologies that have led to this achievement along with a brief look at future challenges

    Superconformal spaces and implications for superstrings

    Full text link
    We clarify some properties of projective superspace by using a manifestly superconformal notation. In particular, we analyze the N=2 scalar multiplet in detail, including its action, and the propagator and its super-Schwinger parameters. The internal symmetry is taken to be noncompact (after Wick rotation), allowing boundary conditions that preserve it off shell. Generalization to N=4 suggests the coset superspace PSU(2,2|4)/OSp(4|4) for the AdS/CFT superstring.Comment: 19 pages, no figures; v2: fixed sign, added note & reference; v3: added note & references, version to appear in Physical Review

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures
    • 

    corecore