38 research outputs found

    Implementing parasite genotyping into national surveillance frameworks: Feedback from control programmes and researchers in the Asia-pacific region

    Get PDF
    The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process

    Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions

    Get PDF
    Funder: Division of Intramural Research, National Institute of Allergy and Infectious Diseases; doi: http://dx.doi.org/10.13039/100006492Abstract: Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets

    Adaptation of Plasmodium falciparum to humans involved the loss of an ape-specific erythrocyte invasion ligand

    Get PDF
    Abstract: Plasmodium species are frequently host-specific, but little is currently known about the molecular factors restricting host switching. This is particularly relevant for P. falciparum, the only known human-infective species of the Laverania sub-genus, all other members of which infect African apes. Here we show that all tested P. falciparum isolates contain an inactivating mutation in an erythrocyte invasion associated gene, PfEBA165, the homologues of which are intact in all ape-infective Laverania species. Recombinant EBA165 proteins only bind ape, not human, erythrocytes, and this specificity is due to differences in erythrocyte surface sialic acids. Correction of PfEBA165 inactivating mutations by genome editing yields viable parasites, but is associated with down regulation of both PfEBA165 and an adjacent invasion ligand, which suggests that PfEBA165 expression is incompatible with parasite growth in human erythrocytes. Pseudogenization of PfEBA165 may represent a key step in the emergence and evolution of P. falciparum

    Phytoplankton composition from sPACE: Requirements, opportunities, and challenges

    Get PDF
    Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years through near surface measurements of the concentration of chlorophyll a. While remote sensing of ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic and freshwater ecosystems, it is important to consider both total phytoplankton biomass and changes in phytoplankton community composition in order to fully understand the dynamics of the aquatic ecosystems. With the upcoming launch of NASA\u27s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we analyze the needs of the user community, review existing approaches for detecting phytoplankton community composition in situ and from space, and highlight the benefits that the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and gaps to be addressed by the community going forward, while offering a vision of what global phytoplankton community composition will look like through the “eyes” of PACE

    EXPORTS Measurements and Protocols for the NE Pacific Campaign

    Get PDF
    EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology

    Mitochondrial Heteroplasmy Contributes to the Dynamic Atovaquone Resistance Response in Plasmodium falciparum

    No full text
    Of the considerable challenges researchers face in the control and elimination of malaria, the development of antimalarial drug resistance in parasite populations remains a significant hurdle to progress worldwide. Atovaquone is used in combination with proguanil (Malarone) as an antimalarial treatment in uncomplicated malaria, but is rendered ineffective by the rapid development of atovaquone resistance during treatment. Previous studies have established that de novo mutant parasites confer resistance to atovaquone with a substitution in amino acid 268 in the cytochrome b gene encoded by the parasite mitochondrial genome, yet much is still unknown about how this resistance develops, and whether parasites are inherently predisposed to resistance development. Here we report phenotypic characterization of isolates from patients that failed treatment in the original atovaquone Phase II studies in Thailand by using a diverse series of chemotypes that target mitochondrial functions. We defined their structure-activity relationships and observed broad resistance (5-30,000 fold in atovaquone), suggesting that cytochrome b mutations alone are not sufficient to explain this spectrum of resistance. We also report the first known in vitro selection that recapitulates the clinical Y268S mutation using the TM90-C2A genetic background, the pre-treatment parent for TM90-C2B. Selection of the Y268S mutation in TM90-C2A and others indicates that the parasite genetic background is critical in the selection of clinical atovaquone resistance, since selection attempts in multiple other genetic backgrounds results in mutations at positions other than amino acid 268. We implicate mitochondrial heteroplasmy in the development of sporadic, rapid resistance to atovaquone, where pre-existing low-level mutations in the multi-copy mitochondrial DNA can be quickly selected for in parasite populations. High-coverage mitochondrial deep-sequencing data showed that low-level Y268S mutants were present in admission parasites from the atovaquone Phase II clinical trials in Thailand, and recrudescent parasites either maintained high level Y268S mutation frequencies or gradually returned to cryptic Y268S levels. The phenomenon of gradual heteroplasmic conversion back to wild-type was noted in some ex vivo patient isolated parasites as well as some in vitro selected lines, which suggests that other factors are at play that influence heteroplasmy stability. In addition to mitochondrial heteroplasmy, the total mtDNA copy number is likely influencing phenotypes in a gene dose-dependent fashion. Further, pressure on the DHODH enzyme that results in DHODH copy number amplifications/mutations has been shown to influence mitochondrial heteroplasmy directly. Last, mitochondrial diversity was shown to be vastly underestimated without heteroplasmic loci being taken into account, as seen in the re-analysis of the Pf3K MalariaGEN genome dataset we performed. The complex interactions between these drug resistance mechanisms reveal the phenotypic and genotypic plasticity that the Plasmodium falciparum parasite utilizes are a clear fitness advantage in the face of mitochondrial stress, and further studies are required to determine the impact of this wide-ranging phenotype on the development of new mitochondria-targeted drugs

    Mitochondrial Heteroplasmy Contributes to the Dynamic Atovaquone Resistance Response in Plasmodium falciparum

    Get PDF
    Of the considerable challenges researchers face in the control and elimination of malaria, the development of antimalarial drug resistance in parasite populations remains a significant hurdle to progress worldwide. Atovaquone is used in combination with proguanil (Malarone) as an antimalarial treatment in uncomplicated malaria, but is rendered ineffective by the rapid development of atovaquone resistance during treatment. Previous studies have established that de novo mutant parasites confer resistance to atovaquone with a substitution in amino acid 268 in the cytochrome b gene encoded by the parasite mitochondrial genome, yet much is still unknown about how this resistance develops, and whether parasites are inherently predisposed to resistance development. Here we report phenotypic characterization of isolates from patients that failed treatment in the original atovaquone Phase II studies in Thailand by using a diverse series of chemotypes that target mitochondrial functions. We defined their structure-activity relationships and observed broad resistance (5-30,000 fold in atovaquone), suggesting that cytochrome b mutations alone are not sufficient to explain this spectrum of resistance. We also report the first known in vitro selection that recapitulates the clinical Y268S mutation using the TM90-C2A genetic background, the pre-treatment parent for TM90-C2B. Selection of the Y268S mutation in TM90-C2A and others indicates that the parasite genetic background is critical in the selection of clinical atovaquone resistance, since selection attempts in multiple other genetic backgrounds results in mutations at positions other than amino acid 268. We implicate mitochondrial heteroplasmy in the development of sporadic, rapid resistance to atovaquone, where pre-existing low-level mutations in the multi-copy mitochondrial DNA can be quickly selected for in parasite populations. High-coverage mitochondrial deep-sequencing data showed that low-level Y268S mutants were present in admission parasites from the atovaquone Phase II clinical trials in Thailand, and recrudescent parasites either maintained high level Y268S mutation frequencies or gradually returned to cryptic Y268S levels. The phenomenon of gradual heteroplasmic conversion back to wild-type was noted in some ex vivo patient isolated parasites as well as some in vitro selected lines, which suggests that other factors are at play that influence heteroplasmy stability. In addition to mitochondrial heteroplasmy, the total mtDNA copy number is likely influencing phenotypes in a gene dose-dependent fashion. Further, pressure on the DHODH enzyme that results in DHODH copy number amplifications/mutations has been shown to influence mitochondrial heteroplasmy directly. Last, mitochondrial diversity was shown to be vastly underestimated without heteroplasmic loci being taken into account, as seen in the re-analysis of the Pf3K MalariaGEN genome dataset we performed. The complex interactions between these drug resistance mechanisms reveal the phenotypic and genotypic plasticity that the Plasmodium falciparum parasite utilizes are a clear fitness advantage in the face of mitochondrial stress, and further studies are required to determine the impact of this wide-ranging phenotype on the development of new mitochondria-targeted drugs
    corecore