49 research outputs found

    Mass Upper Bounds for Over 50 Kepler Planets Using Low-S/N Transit Timing Variations

    Full text link
    Prospects for expanding the available mass measurements of the Kepler sample are limited. Planet masses have typically been inferred via radial velocity (RV) measurements of the host star or time-series modeling of transit timing variations (TTVs) in multiplanet systems; however, the majority of Kepler hosts are too dim for RV follow-up, and only a select number of systems have strong enough TTVs for time-series modeling. Here, we develop a method of constraining planet mass in multiplanet systems using low signal-to-noise ratio (S/N) TTVs. For a sample of 175 planets in 79 multiplanet systems from the California-Kepler Survey, we infer posteriors on planet mass using publicly available TTV time-series from Kepler. For 53 planets (>30%>30\% of our sample), low-S/N TTVs yield informative upper bounds on planet mass, i.e., the mass constraint strongly deviates from the prior on mass and yields a physically reasonable bulk composition. For 25 small planets, low-S/N TTVs favor volatile-rich compositions. Where available, low-S/N TTV-based mass constraints are consistent with RV-derived masses. TTV time-series are publicly available for each Kepler planet, and the compactness of Kepler systems makes TTV-based constraints informative for a substantial fraction of multiplanet systems. Leveraging low-S/N TTVs offers a valuable path toward increasing the available mass constraints of the Kepler sample.Comment: 18 pages, accepted to A

    A Third Approach to Gene Prediction Suggests Thousands of Additional Human Transcribed Regions

    Get PDF
    The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital information stored in the human genome. Many algorithms for computational gene prediction have been described, ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity. Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They therefore complement existing gene prediction methods and will help identify functional transcripts within many apparent “genomic deserts.

    Investigating the Lower Mass Gap with Low Mass X-ray Binary Population Synthesis

    Full text link
    Mass measurements from low-mass black hole X-ray binaries (LMXBs) and radio pulsars have been used to identify a gap between the most massive neutron stars (NSs) and the least massive black holes (BHs). BH mass measurements in LMXBs are typically only possible for transient systems: outburst periods enable detection via all-sky X-ray monitors, while quiescent periods enable radial-velocity measurements of the low-mass donor. We quantitatively study selection biases due to the requirement of transient behavior for BH mass measurements. Using rapid population synthesis simulations (COSMIC), detailed binary stellar-evolution models (MESA), and the disk instability model of transient behavior, we demonstrate that transient-LMXB selection effects introduce observational biases, and can suppress mass-gap BHs in the observed sample. However, we find a population of transient LMXBs with mass-gap BHs form through accretion-induced collapse of a NS during the LMXB phase, which is inconsistent with observations. These results are robust against variations of binary evolution prescriptions. The significance of this accretion-induced collapse population depends upon the maximum NS birth mass MNS,birthmaxM_\mathrm{ NS, birth-max}. To reflect the observed dearth of low-mass BHs, COSMIC and MESA models favor MNS,birthmax2MM_\mathrm{ NS, birth-max} \lesssim2M_{\odot}. In the absence of further observational biases against LMXBs with mass-gap BHs, our results indicate the need for additional physics connected to the modeling of LMXB formation and evolution.Comment: 21 pages, accepted to Ap

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ponderings on the Possible Preponderance of Perpendicular Planets

    No full text
    Misalignments between planetary orbits and the equatorial planes of their host stars are clues about the formation and evolution of planetary systems. Earlier work found evidence for a peak near 90° in the distribution of stellar obliquities, based on frequentist tests. We performed hierarchical Bayesian inference on a sample of 174 planets for which either the full three-dimensional stellar obliquity has been measured (72 planets) or for which only the sky-projected stellar obliquity has been measured (102 planets). We investigated whether the obliquities are best described by a Rayleigh distribution or by a mixture of a Rayleigh distribution representing well-aligned systems and a different distribution representing misaligned systems. The mixture models are strongly favored over the single-component distribution. For the misaligned component, we tried an isotropic distribution and a distribution peaked at 90° and found the evidence to be essentially the same for both models. Thus, our Bayesian inference engine did not find strong evidence favoring a “perpendicular peak,” unlike the frequentist tests. We also investigated selection biases that affect the inferred obliquity distribution, such as the bias of the gravity-darkening method against obliquities near 0° or 180°. Further progress in characterizing the obliquity distribution will probably require the construction of a more homogeneous and complete sample of measurements

    Modeling the Feasibility of Whole Genome Shotgun Sequencing Using a Pairwise End Strategy. Genomics 2000

    No full text
    In pairwise end sequencing, sequences are determined from both ends of random subclones derived from a DNA target. Sufficiently similar overlapping end sequences are identified and grouped into contigs. When a clone's paired end sequences fall in different contigs, the contigs are connected together to form scaffolds. Increasingly, the goals of pairwise strategies are large and highly repetitive genomic targets. Here, we consider large-scale pairwise strategies that employ mixtures of subclone sizes. We explore the properties of scaffold formation within a hybrid theory/ simulation mathematical model of a genomic target that contains many repeat families. Using this model, we evaluate problems that may arise, such as falsely linked end sequences (due either to random matches or to homologous repeats) and scaffolds that terminate without extending the full length of the target. We illustrate our model with an exploration of a strategy for sequencing the human genome. Our results show that, for a strategy that generates 10-fold sequence coverage derived from the ends of clones ranging in length from 2 to 150 kb, using an appropriate rule for detecting overlaps, we expect few false links while obtaining a single scaffold extending the length of each chromosome
    corecore