591 research outputs found
Optical dispersion relations for diamondlike carbon films
Ellipsometric measurements on plasma deposited diamondlike amorphous carbon (a-C:H) films were taken in the visible, (E = 1.75 to 3.5 eV). The films were deposited on Si and their properties were varied using high temperature (up to 750 C) anneals. The real (n) and imaginary (k) parts of the complex index of refraction, N, were obtained simultaneously. Following the theory of Forouhi and Bloomer, a least squares fit was used to find the dispersion relations n(E) and k(E). Reasonably good fits were obtained, showing that the theory can be used for a-C:H films. Moreover, the value of the energy gap, Eg, obtained in this way was compared the the Eg value using conventional Tauc plots and reasonably good agreement was obtained
A new technique for oil backstreaming contamination measurements
Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination was measured in the Space Power Facility (SPF) near Sandusky, OH, the largest space simulation vacuum test chamber in the U.S.. Small clean silicon wafers placed at all desired measurement sites were used as contamination sensors. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet the silicon substrate uniformly, two analysis models were developed to measure the oil film: (1) continuous, homogeneous film; and (2) islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x-ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on examples exposed to the same vacuum runs
Erratum: ‘‘Ellipsometric characterization of In0.52Al0.48As and of modulation doped field effect transistor structures on InP substrates’’ [Appl. Phys. Lett. 62, 1411 (1993)]
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69682/2/APPLAB-63-1-121-1.pd
Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices
An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques
The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)
Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry
Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration
Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry
Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing
Adding flavour to the Polchinski-Strassler background
As an extension of holography with flavour, we analyze in detail the
embedding of a D7-brane probe into the Polchinski-Strassler gravity background,
in which the breaking of conformal symmetry is induced by a 3-form flux G_3.
This corresponds to giving masses to the adjoint chiral multiplets. We consider
the N=2 supersymmetric case in which one of the adjoint chiral multiplets is
kept massless while the masses of the other two are equal. This setup requires
a generalization of the known expressions for the backreaction of G_3 in the
case of three equal masses to generic mass values. We work to second order in
the masses to obtain the embedding of D7-brane probes in the background. At
this order, the 2-form potentials corresponding to the background flux induce
an 8-form potential which couples to the worldvolume of the D7-branes. We show
that the embeddings preserve an SU(2) x SU(2) symmetry. We study possible
embeddings both analytically in a particular approximation, as well as
numerically. The embeddings preserve supersymmetry, as we investigate using the
approach of holographic renormalization. The meson spectrum associated to one
of the embeddings found reflects the presence of the adjoint masses by
displaying a mass gap.Comment: LaTeX, 50 pages, 9 figure
Black strings in AdS_5
We present non-extremal magnetic black string solutions in five-dimensional
gauged supergravity. The conformal infinity is the product of time and S^1xS_h,
where S_h denotes a compact Riemann surface of genus h. The construction is
based on both analytical and numerical techniques. We compute the holographic
stress tensor, the Euclidean action and the conserved charges of the solutions
and show that the latter satisfy a Smarr-type formula. The phase structure is
determined in the canonical ensemble, and it is shown that there is a first
order phase transition from small to large black strings, which disappears
above a certain critical magnetic charge that is obtained numerically. For
another particular value of the magnetic charge, that corresponds to a twisting
of the dual super Yang-Mills theory, the conformal anomalies coming from the
background curvature and those arising from the coupling to external gauge
fields exactly cancel. We also obtain supersymmetric solutions describing waves
propagating on extremal BPS magnetic black strings, and show that they possess
a Siklos-Virasoro reparametrization invariance.Comment: 40 pages, 7 figures, JHEP3. v2: minor corrections, 2 references
added. v3: typos in holographic stress tensor corrected, 3 references adde
- …