55 research outputs found

    Phylotastic! Making Tree-of-Life Knowledge Accessible, Reusable and Convenient

    Get PDF
    Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. Results: With the aim of building such a "phylotastic" system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website (www.phylotastic.org), and a server image. Conclusions: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.NESCent (the National Evolutionary Synthesis Center)NSF EF-0905606iPlant Collaborative (NSF) DBI-0735191Biodiversity Synthesis Center (BioSync) of the Encyclopedia of LifeComputer Science

    A Target Enrichment Bait Set for Studying Relationships among Ostariophysan Fishes

    Get PDF
    © 2020 by the American Society of Ichthyologists and Herpetologists. Target enrichment of conserved nuclear loci has helped reconstruct evolutionary relationships among a wide variety of species. While there are preexisting bait sets to enrich a few hundred loci across all fishes or a thousand loci from acanthomorph fishes, no bait set exists to enrich large numbers (\u3e1,000 loci) of ultraconserved nuclear loci from ostariophysans, the second largest actinopterygian superorder. In this study, we describe how we designed a bait set to enrich 2,708 ultraconserved nuclear loci from ostariophysan fishes by combining an existing genome assembly with low coverage sequence data collected from two ostariophysan lineages. We perform a series of enrichment experiments using this bait set across the ostariophysan tree of life, from the deepest splits among the major groups (\u3e150 Ma) to more recent divergence events that have occurred during the last 50 million years. Our results demonstrate that the bait set we designed is useful for addressing phylogenetic questions from the origin of crown ostariophysans to more recent divergence events, and our in silico results suggest that this bait set may be useful for addressing evolutionary questions in closely related groups of fishes, like Clupeiformes

    Comparative methods in R hackathon

    Get PDF
    The R statistical analysis package has emerged as a popular platform for implementation of powerful comparative methods to understand the evolution of organismal traits and diversification. A hackathon was organized to bring together active R developers as well as end-users working on the integration of comparative phylogenetic methods within R to actively address issues of data exchange standards, code interoperability, usability, documentation quality, and the breadth of functionality for comparative methods available within R. Outcomes included a new base package for phylogenetic trees and data, a public wiki with tutorials and overviews of existing packages, code to allow Mesquite and R to interact, improvement of existing packages, and increased interaction within the community

    Phylotastic! Making tree-of-life knowledge accessible, reusable and convenient

    Full text link
    Abstract Background Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great “Tree of Life” (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user’s needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. Results With the aim of building such a “phylotastic” system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website ( http://www.phylotastic.org ), and a server image. Conclusions Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.http://deepblue.lib.umich.edu/bitstream/2027.42/112888/1/12859_2013_Article_5897.pd

    Genetic Applications in Avian Conservation

    Get PDF
    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems
    • …
    corecore