15 research outputs found

    The impact of housing features relative location on a turbocharger compressor flow

    Get PDF
    This work presents an investigation on a flow phenomenon marked by in-plane velocity non-uniformity associated with a ported shroud turbocharger compressor observed upstream of the compressor inlet at lower operating speeds. The effect of structural struts in the ported shroud (PS) cavity and the location of the volute tongue on velocity non-uniformity is studied in this paper by numerically modelling the complete compressor stage using a (Un)steady Reynolds Averaged Navier-Stokes (RANS & URANS) approach. The results show that the amplitude of in-plane velocity non-uniformity is reduced by removing the struts from the PS cavity. Furthermore, the change in location of the volute tongue is shown to either substantially diminish or enhance the amplitude of velocity non-uniformity based on the relative position of the volute tongue and the struts. The study concludes that the velocity non-uniformity is dependent on the coupled effect of volute tongue and the strut position in the PS cavity

    Dynamic mode decomposition of the acoustic field in radial compressors

    Get PDF
    [EN] Widely recognized since the beginning of air travel as a major issue, noise reduction remains nowadays a pressing concern for all stakeholders in the aviation industry. While aeroengine compressors, specially at the approach phase, have been historically identified as a leading source of noise, most of the research has been conducted on compressors of the axial type. However, radial compressors are found in a wide array of applications: smaller business jets, helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers for reciprocating engines, etc. Owing to their geometrical particularities, radial compressors feature flow patterns that differ from their axial counterparts, leading to different acoustic performance but also opening the door for different optimization approaches. Yet, classical modal decomposition techniques focused on duct propagation may fail to reveal the complex interactions between geometry and flow features that act as noise sources. In this paper we apply, in addition to the classical approach, a data-driven Dynamic Mode Decomposition (DMD) to pressure data coming from a Detached Eddy Simulation (DES), in which we have experimentally validated the correct reproduction of the modal behaviour of the compressor, thus obtaining in-depth details of the link between flow phenomena and noise generation and transmission across the inlet and outlet ducts. (C) 2019 Elsevier Masson SAS. All rights reserved.The equipment used in this work has been partially supported by the Spanish Ministerio de Economía y Competitividad through grant [DPI2015-70464-R] and by FEDER project funds Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT), [FEDER-ICTS-2012-06] framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economía y Competitividad. F. Roig is supported through the Programa de Apoyo para la Investigación y Desarrollo of the Universitat Politècnica de València [PAID-01-17].Broatch, A.; Garcia Tiscar, J.; Roig-Villanueva, F.; Sharma, S. (2019). Dynamic mode decomposition of the acoustic field in radial compressors. Aerospace Science and Technology. 90:388-400. https://doi.org/10.1016/j.ast.2019.05.015S3884009

    Evolution of flow characteristics in a centrifugal compressor with an increase in operating speed

    Full text link
    [EN] Developments in materials, manufacturing and computing methods have catalysed the generation of efficient compressor designs with higher specific power outputs. Centrifugal compressors have become pervasive in environments demanding a combination of higher power with smaller sizes such as unmanned aerial vehicles, micro gas turbines and turbochargers. These compressors are expected to perform optimally in a range of operational speeds and mass flow states with low acoustic emissions. The impact of operating speed on the flow and acoustic characteristics of a ported shroud compressor has been explored in this work. The operation of the open and blocked configurations of the compressor at the design and near surge points each of a lower and a higher speedline was numerically and experimentally investigated. Comparing the results, the model was shown to predict the operation of the compressor for both configurations at the investigated operating points satisfactorily in terms of both performance and dominant acoustic features. With an increase in the velocity and the Mach number due to increased operational speed, changes in the flow behaviour in the inducer and diffuser were observed. An increase in operational speed was shown to generally increase the overall acoustic emission of the compressor for both configurations. The number of distinct tones in the acoustic output and their magnitude were also seen to be a function of operating speed.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The project was sponsored and supported by the BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C).Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2021). Evolution of flow characteristics in a centrifugal compressor with an increase in operating speed. International Journal of Engine Research. 22(5):1592-1604. https://doi.org/10.1177/1468087420916606S1592160422

    Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: an experimental study

    Get PDF
    [EN] With the advancements in manufacturing, materials and computational methods, turbomachinery designs have become more efficient providing higher specific power and reliability with lower weight and cost. The rotational speed of turbomachines has increased while the overall machine size has decreased for a similar power output leading to the pervasive presence of small, high-speed turbomachines, specifically centrifugal compressors in helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers and micro gas turbines. In addition to superior aerodynamic performance over a wide range, increased operating speeds have made the acoustic emissions of small centrifugal compressors a critical aspect of design. Therefore, this work presents an experimental campaign to characterise the acoustic behaviour of a compressor with an intent to quantify the dominant features of the flow-induced noise for design and near surge operating conditions. Furthermore, the campaign is extended to establish the impact of the ported shroud casing treatment and operating speed on the acoustic emission of the compressor. The in-duct noise measurement method is used in this work to quantify the noise generated in the compressor by measuring pressure fluctuations near the inducer and diffuser while the propagation of the generated noise to the ducts is computed from an array of piezoelectric sensors. Spectra at the design operating point are dominated by tonal noise while broadband noise content is the dominant feature of spectra for near surge operation. Although the ported shroud cavity does not significantly alter the overall noise levels of the compressor operating at design condition, it does seem to propagate tonal noise. For near surge operation, the casing treatment positively impacts the acoustic emission with a reduction of approximately 10 dB in the range up to the blade pass frequency. Furthermore, various broadband features are also observed to be alleviated by the casing treatment. (C) 2019 Elsevier Masson SAS. All rightsThe project was sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this paper.Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Allport, JM.; Nickson, AK. (2019). Acoustic characterisation of a small high-speed centrifugal compressor with casing treatment: an experimental study. Aerospace Science and Technology. 95:1-15. https://doi.org/10.1016/j.ast.2019.1055181159

    Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor

    Full text link
    [EN] Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational methods. The presence of these small turbomachines, specifically compressors, in helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers and micro gas turbines necessitates superior aerodynamic performance over a broad operational range which is widely achieved by ported shroud casing designs. In addition to aerodynamic performance, acoustic emissions have become a critical aspect of design for these small centrifugal compressors due to high operational speeds. Furthermore, the literature on the acoustic effects of the casing treatment is rather limited. Therefore, the impact of ported shroud casing treatment on the acoustic and flow features of the compressor operating at the design and near surge conditions have been quantified by numerically modelling the open and blocked configuration of the compressors. Upon comparing with experimental results, the numerical spectra are shown to capture the differences between the two configurations at the investigated operating points with reasonable accuracy. Although the casing treatment is generally seen to decrease the overall acoustic emission of the compressor at both operating conditions, increased propagation of tonal content in the direction upstream to the impeller is observed, particularly for design operation. Broadband characteristics in the lower and medium frequency regions usually associated with near surge operation including `whoosh' noise are observed to be alleviated by the ported shroud casing treatment.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C).Sharma, S.; Garcia Tiscar, J.; Allport, JM.; Barrans, S.; Nickson, AK. (2020). Effects of ported shroud casing treatment on the acoustic and flow behaviour of a centrifugal compressor. International Journal of Engine Research. 21(6):998-1011. https://doi.org/10.1177/1468087419880431S998101121

    Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions

    Get PDF
    [EN] The operation of compressor at lower mass flow rates is limited by surge which is marked by large fluctuations in operational variables and accompanied by significant increase in noise. Ported shroud casing treatment is a widely used method to control the flow near unstable conditions in order to obtain a stable operation and enhance deep surge margin. The research on the acoustic effects of the ported shroud design is limited. Therefore, this paper numerically characterises the acoustic features of a turbocharger compressor with ported shroud design operating at marginal or soft surge conditions and investigates the correlation between acoustic characteristics and the spatial flow structures. The acoustic and the flow field features are analysed using spectral signatures obtained from an experimentally validated numerical model using both performance and acoustic measurements. Propagation of the frequency content through the ducts has been estimated with the aid of the beamforming and method of characteristics to enhance the content coming from the compressor. Expected acoustic phenomena such as rotating order tones and blade passing peaks are correctly identified in the modelled spectrum with the limitation to capture the specific broadband features. Hence, the numerical model can be used to further the research encompassing the impact these flow enhancement solutions have on the noise emission of the turbocharger. Inspection of the flow field shows radially exiting fluid at the ported shroud slot leading to the formation of the high-speed jets exiting the ported shroud cavity. Circumferential propagation of the stall cells is also identified in the impeller. Further inspection of the pressure field through modal decomposition implies the localisation of the energetic noise sources in the impeller downstream components. The influence of the ported shroud cavity on the acoustic characteristic of the compressor is not significant and is limited to the propagation of the tonal noise in the direction of impeller upstream. (C) 2019 Elsevier Ltd. All rights reserved.The project is sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this paper. The support of the HPC group at the University of Huddersfield is gratefully acknowledged.Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Nickson, AK.; Allport, JM. (2019). Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Applied Acoustics. 148:434-447. https://doi.org/10.1016/j.apacoust.2019.01.005S43444714

    Acoustic characteristics of a ported shroud turbocompressor operating at design conditions

    Full text link
    [EN] In this article, the acoustic characterisation of a turbocharger compressor with ported shroud design is carried out through the numerical simulation of the system operating under design conditions of maximum isentropic efficiency. While ported shroud compressors have been proposed as a way to control the flow near unstable conditions in order to obtain a more stable operation and enhance deep surge margin, it is often assumed that the behaviour under stable design conditions is characterised by a smooth, non-detached flow that matches an equivalent standard compressor. Furthermore, research is scarce regarding the acoustic effects of the ported shroud addition, especially under the design conditions. To analyse the flow field evolution and its relation with the noise generation, spectral signatures using statistical and scale-resolving turbulence modelling methods are obtained after successfully validating the performance and acoustic predictions of the numerical model with experimental measurements. Propagation of the frequency content through the ducts has been estimated with the aid of pressure decomposition methods to enhance the content coming from the compressor. Expected acoustic phenomena such as `buzz-saw¿ tones, blade passing peaks and broadband noise are correctly identified in the modelled spectrum. Analysis of the flow behaviour in the ported shroud shows rotating structures through the slot that may impact the acoustic and vibration response. Further inspection of the pressure field through modal decomposition confirms the influence of the ported shroud cavity in noise generation and propagation, especially at lower frequencies, suggesting that further research should be carried out on the impact these flow enhancement solutions have on the noise emission of the turbocharger.The project was sponsored and supported by BorgWarner Turbo Systems and the Regional Growth Fund (RGF Grant Award 01.09.07.01/1789C). The authors would like to thank BorgWarner Turbo Systems for permission to publish the results presented in this article. The support of the HPC group at the University of Huddersfield is gratefully acknowledged.Sharma, S.; Broatch, A.; Garcia Tiscar, J.; Allport, JM.; Nickson, AK. (2020). Acoustic characteristics of a ported shroud turbocompressor operating at design conditions. International Journal of Engine Research. 21(8):1454-1468. https://doi.org/10.1177/1468087418814635S14541468218Sundström, E., Semlitsch, B., & Mihăescu, M. (2017). Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow, Turbulence and Combustion, 100(3), 705-719. doi:10.1007/s10494-017-9877-zGonzalez, A., Ferrer, M., de Diego, M., Piñero, G., & Garcia-Bonito, J. . (2003). Sound quality of low-frequency and car engine noises after active noise control. Journal of Sound and Vibration, 265(3), 663-679. doi:10.1016/s0022-460x(02)01462-1Brizon, C. J. da S., & Bauzer Medeiros, E. (2012). Combining subjective and objective assessments to improve acoustic comfort evaluation of motor cars. Applied Acoustics, 73(9), 913-920. doi:10.1016/j.apacoust.2012.03.013Teng, C., & Homco, S. (2009). Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE International Journal of Passenger Cars - Mechanical Systems, 2(1), 1345-1351. doi:10.4271/2009-01-2053Figurella, N., Dehner, R., Selamet, A., Tallio, K., Miazgowicz, K., & Wade, R. (2014). Noise at the mid to high flow range of a turbocharger compressor. Noise Control Engineering Journal, 62(5), 306-312. doi:10.3397/1/376229Torregrosa, A. J., Broatch, A., Margot, X., García-Tíscar, J., Narvekar, Y., & Cheung, R. (2017). Local flow measurements in a turbocharger compressor inlet. Experimental Thermal and Fluid Science, 88, 542-553. doi:10.1016/j.expthermflusci.2017.07.007Broatch, A., Galindo, J., Navarro, R., García-Tíscar, J., Daglish, A., & Sharma, R. K. (2015). Simulations and measurements of automotive turbocharger compressor whoosh noise. Engineering Applications of Computational Fluid Mechanics, 9(1), 12-20. doi:10.1080/19942060.2015.1004788Raitor, T., & Neise, W. (2008). Sound generation in centrifugal compressors. Journal of Sound and Vibration, 314(3-5), 738-756. doi:10.1016/j.jsv.2008.01.034Galindo, J., Tiseira, A., Navarro, R., & López, M. A. (2015). Influence of tip clearance on flow behavior and noise generation of centrifugal compressors in near-surge conditions. International Journal of Heat and Fluid Flow, 52, 129-139. doi:10.1016/j.ijheatfluidflow.2014.12.004Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2014). Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors. International Journal of Heat and Fluid Flow, 50, 134-144. doi:10.1016/j.ijheatfluidflow.2014.06.006Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032Sundström, E., Semlitsch, B., & Mihăescu, M. (2018). Acoustic signature of flow instabilities in radial compressors. Journal of Sound and Vibration, 434, 221-236. doi:10.1016/j.jsv.2018.07.040Torregrosa, A. J., Broatch, A., Margot, X., & García-Tíscar, J. (2016). Experimental methodology for turbocompressor in-duct noise evaluation based on beamforming wave decomposition. Journal of Sound and Vibration, 376, 60-71. doi:10.1016/j.jsv.2016.04.035Nicoud, F., & Ducros, F. (1999). Flow, Turbulence and Combustion, 62(3), 183-200. doi:10.1023/a:1009995426001Chow, P., Cross, M., & Pericleous, K. (1996). A natural extension of the conventional finite volume method into polygonal unstructured meshes for CFD application. Applied Mathematical Modelling, 20(2), 170-183. doi:10.1016/0307-904x(95)00156-eKaji, S., & Okazaki, T. (1970). Generation of sound by rotor-stator interaction. Journal of Sound and Vibration, 13(3), 281-307. doi:10.1016/s0022-460x(70)80020-7Sivagnanasundaram, S., Spence, S., & Early, J. (2013). Map Width Enhancement Technique for a Turbocharger Compressor. Journal of Turbomachinery, 136(6). doi:10.1115/1.4007895Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition. Theoretical and Computational Fluid Dynamics, 2(5-6), 339-352. doi:10.1007/bf00271473Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9LIANG, Y. C., LEE, H. P., LIM, S. P., LIN, W. Z., LEE, K. H., & WU, C. G. (2002). PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY. Journal of Sound and Vibration, 252(3), 527-544. doi:10.1006/jsvi.2001.4041Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. doi:10.1002/wics.101Nikiforov, V. (2007). The energy of graphs and matrices. Journal of Mathematical Analysis and Applications, 326(2), 1472-1475. doi:10.1016/j.jmaa.2006.03.07

    Numerical characterisation of flow-induced noise in a small high-speed centrifugal compressor with casing treatment

    No full text
    Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational methods. The presence of these small turbomachines, specifically compressors, in helicopters, unmanned aerial vehicles (UAVs), auxiliary power units (APUs), turbochargers and micro gas turbines necessitates superior aerodynamic performance over a broad operational range which is widely achieved by ported shroud casing designs. In addition to aerodynamic performance, acoustic emissions have become a critical aspect of design for these small centrifugal compressors due to high operational speeds. Therefore, in this thesis, a high-speed turbocharger compressor with the ported shroud (PS) casing treatment is used as a subject to understand the flow-induced noise in high-speed centrifugal machines using high-fidelity numerical (CFD) methods. Furthermore, the impact of PS design and operating speed on the acoustic emission of the compressor is also established by comparing the operation of PS open and PS blocked compressor configurations at 99 krpm and 130 krpm speedlines. The numerical model to predict the acoustic characteristics of the compressor is developed and validated by comparing the acoustic and performance results with the experimental values. The impact of various critical parameters on the performance and acoustic predictions is quantified by exploring a range of statistical and scale resolving methods of turbulence formulations along with their sensitivity to spatial and temporal resolution. The results demonstrate the need for higher spatial resolution for scale resolving models to yield credible acoustic predictions. The results from the selected numerical configuration are analysed to establish the relationship between the flow field and the acoustic characteristics of the compressor. The acoustic spectra for the design point are seen to be dominated by a characteristic ‘buzz-saw’ or Rotating Order (RO) tonal noise. These ‘buzz-saw’ or RO tones are confirmed to be caused by the sonic conditions on the leading edges of the impeller blades. For the near surge operation, the low-frequency broadband features associated with near surge operation are alleviated by the PS casing treatment and are not observed in the corresponding spectra. Furthermore, the characteristic ‘whoosh’ noise is also not observed in the spectra of either design or near surge points. The flow is further investigated by the modal decomposition of the dynamic pressure field using Proper Orthogonal Decomposition (POD) to compute the high-energy coherent structures and their corresponding spectral characteristics. For the design operation, the results showed the accumulation of higher energy content in the first two modes that are related to the RO and blade pass tones. The diffuser and the PS cavity are found to house the energetic sources of the oscillations. For the near surge point, the energy is seen to be distributed much more evenly among the modes. The diffuser and volute are observed to house the more energetic sources of broadband content without any significant contribution from the PS cavity. The comparison of the open and blocked configurations operating at design conditions shows higher tonal content in the inlet duct spectrum of the open configuration. For the near surge operation, the broadband elevations in the lower and medium frequency regions are observed for the blocked configuration. Furthermore, characteristic ‘whoosh’ noise is also identified in the outlet duct spectrum of the blocked configuration. The increase in operational speed causes a general increase in the overall acoustic emission of the compressor for both configurations
    corecore