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Abstract

Widely recognized since the beginning of air travel as a major issue, noise reduction remains nowadays a pressing concern for
all stakeholders in the aviation industry. While aeroengine compressors, specially at the approach phase, have been historically
identified as a leading source of noise, most of the research has been conducted on compressors of the axial type. However,
radial compressors are found in a wide array of applications: smaller business jets, helicopters, unmanned aerial vehicles
(UAVs), auxiliary power units (APUs), turbochargers for reciprocating engines, etc. Owing to their geometrical particularities,
radial compressors feature flow patterns that differ from their axial counterparts, leading to different acoustic performance but
also opening the door for different optimization approaches. Yet, classical modal decomposition techniques focused on duct
propagation may fail to reveal the complex interactions between geometry and flow features that act as noise sources. In this
paper we apply, in addition to the classical approach, a data-driven Dynamic Mode Decomposition (DMD) to pressure data
coming from a Detached Eddy Simulation (DES), in which we have experimentally validated the correct reproduction of the
modal behaviour of the compressor, thus obtaining in-depth details of the link between flow phenomena and noise generation
and transmission across the inlet and outlet ducts.
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1. Introduction

Since its very inception, noise has been one of the fun-
damental issues of commercial aviation—as an illustrative
example, in 1935 Agatha Christie described the comfort of
the Handley Page H.P.42 covering the Croydon–Le Bourget
route by noting that ‘The noise of the engines was very skilfully
deadened. There was no need to put cotton wool in the ears’ [1].

As aeronautical technology improved well beyond the
strategic use of cotton wool and, especially, after the advances
developed during WWII were implemented into civilian air-
liners, the plight of early air travel became a much more
comfortable—and thus popular—experience.

Of special importance regarding noise and vibration was
the introduction of the jet engine. While at first the jet exhaust
itself deafened any other acoustic source, success of turbofan
engines in reducing this issue uncovered a new problem for
their manufacturers. The broadband jet flow noise was actu-
ally masking the compressor inlet discrete-frequency ‘whine’,
which was now much more noticeable during the approach
phase, thereby making aircraft noise an even worse problem
in terms of sound quality [2].

It is in this historical context where the seminal work of
Tyler and Sofrin [2] of Pratt & Whitney Aircraft was presented.
They sought to offer a complete analytical understanding of
axial compressor acoustics, from the source pressure distri-
bution to the duct propagation and ambient radiation. Their
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studies highlighted the role of rotating acoustic modes that
were, at the time, regarded as phenomena of secondary im-
portance [3].

While the analytical spinning mode approach has been
used abundantly along the years in both numerical and ex-
perimental investigations of aircraft engine noise [4, 5], most
of these investigations have been focused on axial turboma-
chinery. Studies regarding the modal decomposition of the
acoustic field produced by radial machines have remained,
on the other hand, relatively scarce in comparison [6].

As radial compressors feature flow phenomena that differ
from those found in axial machines [7], it becomes neces-
sary to investigate how these, in particular, relate with the
generation and propagation of noise at different frequencies.
While at design condition tonal noise at the Blade Passing
Frequency (BPF), caused by the rotation of pressure patterns
associated to the aerodynamic blade loading, behaves simi-
larly in both kinds of compressor, stall and surge dynamics of
radial machines are still less understood [8, 9].

Particularly, non-axisymmetric volutes that create pres-
sure differences along the angular coordinate [10] cause non-
uniformities in the flow field and have been found to influence
the location of shock waves in the passages, leading edge
spillages and tip leakage flow trajectories [11].

In turn, these unstable flow phenomena related to the
geometric characteristics are linked to the spectral signature
of the compressor noise [12]. This opens the door to geometry
improvements that optimize both flow stability and acoustics,
such as the use of hub [13] or shroud [14, 15] cavities.
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Nomenclature

List of symbols
A Modal amplitude (–)
cp Specific heat capacity at const. p (J kg−1 K−1)
f Frequency (Hz)
kx Modal axial wavenumber (–)
ṁ Mass flow rate (kg s−1)
p Pressure (Pa)
R Duct radius (m)
r Radial coordinate (m)
T Temperature (K)
t Time (s)
x Axial coordinate (m)
y+ Non-dimensional boundary layer distance (–)
γ Ratio of specific heats (–)
θ Azimuthal coordinate (rad)
κ Modal radial wavenumber (–)
λ DMD modal eigenvalue (–)

Φ DMD modal shape (–)
ϕ Azimuthal modal distribution (–)

List of sub- and superscripts
0 Mean (flow variable)
co Cut-off (frequency)
in Inlet duct
m Azimuthal modal order
n Radial modal order
out Outlet duct
T Total or stagnation variable

List of abbreviations
BPF Blade Passing Frequency
DMD Dynamic Mode Decomposition
PSD Power Spectral Density

In this paper, a better understanding of the relationship
between the radial compressor geometry, its unstable flow
features, and the corresponding acoustic phenomena is sought
by means of modal decomposition techniques applied to a
numerical simulation of the system operating at the onset of
the mild surge region where unstable flow features start to
manifest.

2. Theoretical background

2.1. Analytical spinning modes

In order to facilitate the mathematical treatment of the
compressor acoustics, Tyler & Sofrin proposed [2] a modal
decomposition of the acoustic field into rotating pressure
patterns referred to as ‘spinning modes’. Propagation of these
analytical modes was studied by first considering simplified
media such as thin rectangular ducts and narrow annular
ducts which could be understood as 2D cases, and then an
annular duct typical of axial turbomachinery.

However, this analysis primarily concerned tonal noise
caused by the rotor only and by the rotor-stator interaction,
disregarding other broadband noises of aerodynamic origin.
In particular, a steady aerodynamic loading of the blades
rather than unstable vortex-shedding or partially detached
regimes was considered. This steady loading was found to
create ‘lobed’ circumferential distributions of pressure.

Several authors [3, 16–18] have developed this analytical
model over the years, showing that in the case of a uniform cir-
cular duct of radius R with axially uniform mean flow at Mach
M0, it is indeed possible to write the well-known convected
wave equation
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p =∇2p (1)

in such a way that a solution for the pressure field can be
obtained as a superposition of Tyler–Sofrin spinning modes
in polar coordinates (r,θ , x) and time t:
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(2)
Subscript m ∈ . . . ,−2,−1, 0, 1, 2, . . . refers to the azimuthal

order of the mode, this is, the number of wavelenghts of the
‘lobed’ distribution in the circumferential direction. In a com-
pressor without stator blades it is expected that the main
orders are those of m = hnb with h ∈ 1,2, . . . and nb being
the number of rotor blades, this is, those corresponding to
the Blade Passing Frequency (BPF) and its harmonics.

On the other hand, subscript n ∈ 0,1,2, . . . refers to the
radial order, this is, the number of zeros across the radius.
Alternatively, m and n can be seen, respectively, as the number
of nodal lines and nodal circles within a cross-section, with
the special case (m, n) = (0,0) representing a plane wave.

Inspecting Eq. 2, A±mn is seen to represent the unknown
amplitude of each (m, n) mode in both positive and negative
axial propagation direction. Jm is the Bessel function of the
first kind and order m, whereas κmn, the radial wavenumber,
satisfies the imposed boundary condition of an acoustic hard
wall at the outer radius r = R by requiring the first derivative
of the Bessel function J ′m(κmn) to be zero. An illustrative
visual example of this requirement in connection with the
(m, n) order of the modal shapes can be found in Figs. 2 and
3 of Eriksson’s 1980 paper [19].

Whereas the first two exponential terms eimθ and e−iωt in
eq. 2 are easily understood as related to the azimuthal ‘lobed’
structure of the mode and the driving frequency ω= 2π f of
the mode spinning, it is important to carefully consider the
axial wavenumber found in the last exponential term, as it is
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related to the propagation of the signal along the duct:

k±xmn
=
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Here, k =ω/c0 is the acoustic wavenumber, with c0 being
the speed of sound, and the± superscript again indicating that
a certain mode can propagate in either axial direction with
a corresponding A±mn amplitude. Analyzing this expression,
one can identify a specific ‘cut-off’ frequency at which the
argument of the square root becomes zero:

f co
mn = κmn

c0

2πR

q

1−M2
0 (4)

Taking into account the role of k±mn in Eq. 2, it can be seen
that for a driving frequency f < f co

mn, the downstream propaga-

tion termℜ{eik+xmn
x} has a decaying component e−ℑ{k

+
xmn
}x , and

thus mode (m, n) is said to be ‘cut-off’, damped, or evanescent,
since it will vanish at a certain distance from the source.

On the other hand, for values of the driving frequency
f > f co

mn the mode is ‘cut-on’, as the real part of the down-
stream propagation term in Eq. 2 takes oscillatory values
cos(k+xmn

x) and thus the mode propagates unattenuated. A
visual representation of the physical meaning of the cut-off
criterion can be found in Fig. 2 of Morfey’s 1964 paper [3].

An example of the pressure distribution of a Tyler–Sofrin
mode is given in Fig. 1, where mode (6, 1) according to Eqs. 2
and 3 is represented. The rest of the parameters have been ar-
bitrarily chosen so that f > f co

6,1 and thus the mode propagates
along the duct. The physical meaning of the cross-section
pressure pattern in relation to the aerodynamic loading of the
compressor blades is apparent.

Thus, in order to find the unknown modal amplitudes
A±mn, one can either conduct experimental measurements or
numerical simulations of p(t) at different locations and then
perform a least-squares fitting following the procedure rec-
ommended by Moore [20]. In his experimental rig, a single
microphone was motorized so it could reach different radial
and circumferential positions at the measurement plane.

Radial order n = 1

Azimuthal order m = 6

Spiral pattern

p6,1 < 0
p6,1 > 0

M0

ω

Figure 1: Example of the Tylor–Sofrin mode (6, 1) numerically
evaluated with arbitrary values chosen so that f > f co

6,1

Later, authors such as Raitor & Neise [6] implemented
these techniques in the experimental characterization of cen-
trifugal fans and turbocompressors. Most recently, Limacher,
Banica et al. investigated the sound field of centrifugal tur-
bochargers through the least-square fitting of select blade
passing frequencies to Tyler–Sofrin modes from both numeri-
cal [21] and experimental [22] points of view.

While these works successfully demonstrate that the pres-
sure distribution of the expected Tyler–Sofrin modes (hnb, 0)
is found in the measurement sections for the frequency corre-
sponding to the BPF tone and its harmonics, this approach is
not without drawbacks, especially in centrifugal compressors.

Besides the restriction of the shape of the modes them-
selves, which must adhere to Eq. 2, several assumptions are
used. Excitation is introduced in an ‘actuator disk’ manner,
and then equally propagated up and downstream. Especially
the latter is questionable in centrifugal compressors, in which
the outlet, contrary to the inlet, does not directly ‘see’ the
rotating blade pressure distribution as the perturbations must
first travel through the complex flow in the volute.

Furthermore, while uniform, unidirectional flow is as-
sumed, it is known that between the onset of the marginal
surge conditions to the deep surge limit, recirculating back-
flow at high temperature is present in the inlet section [23].
Also, while evanescent modes may not fully propagate be-
yond a short distance, both these local phenomena near the
compressor may induce vibroacoustic excitation on the pipes,
often made of rigid plastic materials to save weight and cost,
and thus still radiate noise.

It can be seen in the aforementioned studies [6, 21, 22]
that when noise phenomena other than BPF harmonic tones
are decomposed in this way, a large number of mode orders
become excited, this is, a large sum along the m and n orders
is required in order to explain the observed pressure pattern
at the measured cross-section.

A large sum of modes with similar amplitudes A±mn makes
difficult to understand the spatial distribution of the phe-
nomenon, indicating that the actual pressure pattern is not
particularly similar to any specific mode. Thereby, it is pos-
sible that the Taylor–Sofrin analytical model may not be the
optimum decomposition in these particular situations.

2.2. Dynamic Mode Decomposition

A very different alternative to the analytical solution lies in
the use of data-driven numerical decompositions, such as the
classical Proper Orthogonal Decomposition (POD) [24] which
was pioneered by Lumley in 1967 for detection of spatial
coherent patterns in turbulent flows [25] and has since been
used widely in aeronautical research [26–30].

A recent alternative, better suited for the identification
of acoustic phenomena at particular frequencies, is the Dy-
namic Mode Decomposition (DMD) [31], a technique which
aims to group coherent spatial features into modes of a single
temporal frequency [32, 33]. It has been used in recent in-
vestigations of, for instance, cavity flow [34], airfoil buffeting
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[35], fan [36] combustion [37, 38] and landing gear [39]
noise, and turbocharger acoustics [40, 41], among others.

This decomposition method is based in estimating the
eigenmodes and eigenvectors associated to the Koopman op-
erator of a given system, an infinite-dimensional but linear
operator which is used to describe the dynamics of finite-
dimensional but non-linear systems [42]. DMD eigenvalues
obtained in this way contain a single frequency, together with
the growth or decay rates associated to their associated mode.
This allows the identification of transient modes that may be
short-lived or low-energetic in nature but still coherent [43].

In general, the evolution of a field such as in this case
the pressure field p(r,θ , x , t) can be described by a temporal
sequence VN

1 of vectors vt(x), each one containing the pressure
data at a certain spatial position x = {r,θ , x} and at a certain
discrete time step t ∈ 1,2, . . . , N :

VN
1 = {v1,v2, . . . ,vN} (5)

This representation fits naturally flow field characteriza-
tions offered by experimental techniques such as Particle Im-
age Velocimetry (PIV), as well as those obtained through Com-
puter Fluid-Dynamics (CFD) simulations. In both cases data is
obtained as several ‘snapshots’ of the flow variables (velocity,
pressure, density, species, etc.), that could be put intuitively
in column vector form, and then assembled in a matrix V
describing the overall evolution of the selected variable.

By following the original procedure introduced by Schmid
[31], DMD can be applied to the snapshot matrix VN

1 of Eq. 5.
If we assume that the snapshots vi which conform the matrix
are linearly related by an unknown matrix A:

vi+1 = Avi (6)

Then the eigenvalues and eigenvectors of this matrix will
characterize the evolution of the flow. Even if the system is
non-linear, this will provide a linear tangent approximation
of the flow evolution. We can combine Eqs. 5 and 6 to write:

VN
2 = AVN−1

1 (7)

While some authors solve this eigensystem by QR decom-
position of the associated companion matrix [32, 44, 45], a
more robust alternative makes use of the Singular Value De-
composition (SVD) VN−1

1 = UΣWT [31, 33, 46, 47]. Plugging
the SVD decomposition into Eq. 7 we obtain:

VN
2 = AUΣWT (8)

We now build a matrix eS, which is defined exclusively
in terms of known matrices but is constructed in a way that
ensures matrix similarity with A:

eS¬ UTVN
2 WΣ−1 = UTAU (9)

As a consequence of this similarity, the eigenvalues λi of
the reduced-size eS match those of the larger A, with the DMD
modal shapes being computed by mapping the eigenvector

matrix Y of eS into the non-reduced space through U, which
we can recognize as being the POD basis of VN−1

1 :

Φ= UY (10)

However, since many numerical routines normalize the
resulting eigenvectors, it is necessary to recover the modal
amplitudes αi , which we can intuitively do by solving the re-
constructed flow field multiplied by the unknown amplitudes
against, for instance, the first snapshot of the flow [48]:

V1 = Φα =⇒ α= Φ−1 V1 = Y−1 U∗ V1 (11)

Where we have taken advantage of the fact that U is uni-
tary and thus its conjugate transpose U∗ is also its inverse, in
order to solve the system by inverting Y instead of the higher
order Φ. Now, the full evolution of the flow described by the
snapshot matrix at discrete time steps tk, can be reconstructed
by the linear superposition of the DMD modes:

V(x, tk) =ℜ

¨

N−1
∑

i=1

Φi(x)αi λ
k−1
i

«

=ℜ
�

ΦDiag(α)Vand(λ)
	

(12)
Here, Diag(α) is the diagonal matrix of modal amplitudes

and Vand(λ) is the Vandermonde matrix of the eigenvalues.
Furthermore, from the eigenvalues we can recover the single
frequency associated to each mode, by taking into account
the time step ∆t between each consecutive snapshot:

fi =
ωi

2π
=
ℑ{ln(λi)}

2π∆t
(13)

Finally, the computed modes need to be ranked in impor-
tance. While the most direct approach consists in computing
the energy of the eigenvectors augmented by the amplitude
coefficients [48], Kou & Zhang [49] have recently proposed
a simple criterion which integrates the influence of each dy-
namic mode on the whole sampling space:

Ei =
N
∑

j=1

�

�

�αi λ
j−1
i

�

�

� ‖Φi‖
2
F ∆t (14)

Since in this work the focus is put into the steady oper-
ation of the compressor, short-lived evanescent modes are
not expected nor of interest for the objective of isolating the
most energetic and relevant modes. Thus, the Kou & Zhang
criterion will be used to rank the DMD modes.

3. Numerical model

The CFD model used in this work to obtain suitable flow
field snapshots has its basis in the work of Broatch et al. [50–
52], which is briefly described herein. The impeller with 6 full
and 6 splitter blades of a radial compressor was digitalized
along with its vaneless diffuser and the compressor volute.
Backplate clearance and tip gap were considered as well in
the model.
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However, as it was estimated that adding the complete ex-
perimental rig ducts would have increased the computational
cost by ten times [50] so five-diameters-long inlet and outlet
straight ducts were used to complete the computational do-
main. This domain will constitute the baseline against which
the improvements in this investigation will be assessed.

The numerical configuration followed the criteria used by
Mendonça et al. [53]. A computational mesh of 9.5 million
polyhedral cells was employed providing y+ values close to
unity at the impeller. A segregated solver was selected to
perform a detached-eddy simulation (DES) with a SST k−ω
turbulence model. Outlet pressure and inlet mass flow bound-
ary conditions were set, and the chosen time discretization
∆t = 1.046× 10−6 s rendered 1º impeller rotation per time
step, in accordance with the sensitivity analysis performed by
Navarro [54]. Heat transfer with surroundings was neglected,

as it was justified [55] that it did not influence the compressor
global variables in the chosen operating conditions.

The described model was validated at three working points:
one close to the best efficiency point (BEP), other at maxi-
mum pressure ratio (MPR) and one close to deep surge [52].
Compressor global variables were predicted with a relative
error below 3%. Inlet and outlet in-duct pressure spectra
were calculated and compared with experimental data.

While certain features were correctly captured by the CFD
model, such as BPF tonal noise, other trends were not well
reproduced, particularly broadband elevations at higher fre-
quencies. There were as well a number of traits in the CFD
spectra not seen in the experimental ones, like low-frequency
ripples in both ducts. These abnormal features were asso-
ciated with the presence of standing waves caused by the
reduced duct length [50].

A

B

Details of the extruded
inlet & outlet meshes

LEXTi

LBSi

L BS
o

L EX
To

Detail A
Leading edge 
and nut incision 

Detail B
Trailing edge
and clearance

Unstructured mesh
Polyhedral cells with inflation

Mixed mesh
Structured duct core 

Extruded mesh
Linearly skewed cells

CFD monitors
Center, wall, area avg.

Exp. sensor

Exp. sensor

Figure 2: Illustration of the full numerical domain, highlighting the extended duct lengths (EXT) versus the baseline (BS) ones, and
including details of the meshing strategy and the location of both numerical monitors and experimental sensors.
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3.1. Extended model

To tackle these issues, a beamforming wave decompo-
sition technique [56] was applied to remove the reflected
components and consider only frequency content originated
at the compressor. The resulting spectra presented improved
agreement with experimental data, but the frequency range
available for analysis was reduced as a Nyquist-type criterion
imposed by the distance between pressure sensors has to be
considered.

Most importantly regarding the present investigation, even
when reliable pressure spectra can be extracted from the
model data by performing beamforming pressure decompo-
sition, the spurious frequency content is still present in the
predicted flow field whose cell values are used to perform
post-processing techniques like modal decomposition.

In the present investigation, the CFD model was built from
the described setup, extending the inlet and outlet ducts to
the length of the experimental rig, in order to alleviate the
aforementioned issues. The new CFD domain can be seen
in Fig. 2. The new ducts were meshed following a strategy
of extruding the cells at the ends of the original ducts in the
axial direction.

Cell lengths were increased in a geometric progression
from the original size at the end of the baseline ducts to a
length of 80 mm at the end of the extended ones, as Fig. 2
shows. The structured core mesh of the previous model was
kept in order to reduce cell count, with unstructured poly-
hedral cells comprising the rest of the domain, save for the
inflation layers at the surfaces.

In consequence, the large regions added to the domain
were meshed with a low cell count of 90× 103 cells for the
inlet duct and 80×103 for the outlet, increasing only by 1.8%
the total number of cells. The resulting mesh keeps y+ values
close to unity near the impeller while at the new ducts the
values are lower than 3.3 for the inlet and 2.5 for the outlet,
enabling the low-Reynolds resolution of the boundary layer.

Another useful feature of the new mesh is the numerical
damping it introduces. The fine mesh between the compressor
wheel and the monitors allows all the frequencies of interest
to be properly resolved, while the coarse mesh between the
boundaries and the monitors dampens the reflected frequency
content. In particular, the maximum cell length of 80 mm
attenuates reflected frequencies above 1200 Hz, considering
that wavelengths exceeding four times the cell length are not
properly captured by the mesh.

3.2. Experimental validation

The CFD model described above grants access to useful
information about the fluid field which can be very difficult
to measure at the experimental rig. However, it is imperative
to assess how well the model reproduces the real flow field
before drawing conclusions from CFD data. In this section
the methodology of validation is described.

Two sets of data are compared: first compressor global
variables are calculated, and then spectra of pressure signals at

inlet and outlet ducts are studied, following the methodology
presented by Broatch et al. [50].

3.2.1. Validation of global variables

Specific work, isentropic efficiency and total to total com-
pression ratio, are considered to assess how accurately CFD
predicts the compressor working point.

Wu =
Ẇ
ṁ
=
Ωτ

ṁ
= cp(Tout,T − Tin,T ) (15)

ηs =
Ẇs

Ẇ
=

Tin,T

�

Π
γ−1
γ

T T − 1
�

Tout,T − Tin,T
(16)

ΠT T =
pout,T

pin,T
(17)

The chosen simulation working point is the one of maxi-
mum compression ratio (null isospeed slope) for the Ω = 160
krpm characteristic line, which corresponds to an air mass
flow (ṁ) of 77 g/s. The location of the selected point in the
compressor map is available in ref. [50]. This specific point
was chosen as it marks the beginning of the mild surge region
in which flow instabilities start affecting the performance of
the compressor, reducing efficiency and introducing additional
noise phenomena. The position of inlet and outlet pressure
and temperature sensors is the same as in the experimental
rig. A comparison can be seen in Table 1.

Table 1: Validation of global variables

Wu [kJ/kg] ΠTT [-] ηs [%]

Experimental data 112.0 2.24 67.8%
Extended CFD model 111.9 2.21 66.8%

Relative error 0.07% 1.35% 1.46%

The agreement between CFD and experimental global
variables is very good, with relative errors no larger than
1.5%. However, since agreement in terms of global variables
does not guarantee a proper prediction of local flow field [57],
hence validation of pressure spectra was carried out.

3.2.2. Validation of pressure spectra

In the experimental rig, in-duct pressure signals are cap-
tured by two arrays of three flush-mounted pressure sensors,
spotted in the inlet and outlet ducts as seen in [50]. In the
original CFD model the monitors were placed closer to the
compressor, as the ducts were shorter than their experimental
rig counterparts. In the extended duct model, the original
monitor location was kept because of the mesh coarsening,
which prevented frequency content of interest to be appropri-
ately captured. The distance between experimental and CFD
arrays at the inlet is above 1.5 m which helps explaining the
small offset in PSD amplitude found in Fig. 3.
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Figure 3: PSD of baseline and extended models vs. experimen-
tal data for both inlet (top plot) and outlet (bottom plot).

Experimental signals were captured during 1 s, and CFD
data was recorded during 42 ms—corresponding to 110 im-
peller revolutions—after a steady state was reached in terms
of global variables. In the calculation of PSD, Welch’s average
was used [58]. Blocks with 50% overlap and Hamming win-
dow function were selected, and the number of blocks was
aimed at obtaining a frequency resolution of 50 Hz.

Inlet PSD calculated from the raw pressure signal captured
by the first sensor of the array can be seen in Fig. 3. The main
features of the experimental spectrum are an initial decay
until 4.7 kHz ( f co

1,0), a broadband elevation from 4.7 kHz to
12 kHz and a decrease in amplitude from 12 kHz onwards.

The CFD extended model is able to reproduce the initial
decay in the plane wave range, and the increase in amplitude
after f co

1,0, but it does not capture the broadband elevation;
instead, amplitude decreases slowly from 14 kHz onwards.
Yet, the model is able to capture the blade passing frequency
tone at about 16 kHz. Of course, above f co

1,0 the raw PSD
signals differ as 3D acoustic modes start propagating along
the duct, affecting the sensors differently due to their different
spatial locations.

Meanwhile, the relevant traits that the outlet PSD presents
are broadband elevations from 750 Hz to 2500 Hz and from
13 kHz to 16 kHz, and the BPF tone at 16 kHz. From the above,
CFD model is not able to capture the 13 to 16 kHz hump,
although it follows quite accurately the experimental spectrum
elsewhere. In conclusion, the new CFD model was able to
reproduce the acoustic field measured at the experimental rig,

except for the above broadband elevations in both inlet and
outlet spectra that occur beyond the plane wave range.

Comparing the extended domain against the baseline one,
it can be seen in Fig. 3 how, at the inlet, ripples in the 0–5 kHz
range have been sufficiently attenuated, a fact which can be
attributed to the alleviation of the standing waves due to
the duct length increase. The offset between experimental
and CFD spectrum in that frequency range has been reduced
as well. At the outlet remarkable improvements are found
in the low frequency range, where the new model follows
significantly better the experimental measurements.

In conclusion, the low frequency spectrum was greatly
improved, particularly at the outlet, being the removal of the
standing waves the main contribution of the ducts extension.
The high frequency spectrum obtained with both models is
the same. Solving the problem of spurious reflected frequency
content, due to the duct extension and the stretched mesh,
allowed for the safe use of post-processing techniques like
modal decomposition, from raw pressure data.

3.2.3. Validation of acoustic modes propagation

Even if raw signals above the plane wave range cannot
be directly compared, further validation of the CFD model
can be accomplished precisely by analyzing this 3D behaviour.
Figure 4 depicts spectra of the pressure signals captured by
three monitors in the same axial position: two point monitors
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Figure 4: PSD of different CFD monitors vs. experimental data
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theoretical Tyler–Sofrin cut-off frequencies.
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located at the duct axis and next to the wall, and a cross
section monitor. As per Eq. 4, the first asymmetric mode (1,0)
and the first radial mode (0,1) should start propagating at
f co
1,0 = 4.7 kHz and f co

0,1 = 9.7 kHz in the case of the inlet duct
and at 7.4 kHz and 15.4 kHz in the case of the outlet duct.

Both f co
1,0 frequencies can be clearly seen in Fig. 4 to ac-

curately match the point where the numerically-predicted
spectrum of the wall monitor begins to differ from that of the
center and area-averaged monitors, for both inlet and outlet
ducts. This is explained in light of the modal shape of the (1, 0)
Tyler–Sofrin mode featuring a nodal line through the center,
thereby relieving the center monitor from the oscillations of
this mode which nonetheless affect the wall monitor.

A similar mechanism explains the departure of the predic-
tion by the center and area-averaged monitors at the onset of
the mode (0,1). Whereas for n= 0 modal shapes the center
monitor lied in a nodal point, ‘filtering out’ the additional
asymmetric mode oscillations being superimposed over the
averaged pressure, at the cut-on frequency of the first circular
mode f co

0,1 the center monitor lies in the point of maximum
modal amplitude, and thus its readings start diverging from
the averaged cross-section data in both ducts.

Crucially, this demonstrated that the simulated flow field
was accurately reproducing 3D acoustic modal phenomena
above the plane wave range, and thus a data-driven modal
decomposition of such flow field was viable and represen-
tative of the real-world modal behaviour of the centrifugal
compressor.

3.3. Data preparation for decomposition

Thus, in order to apply the modal decomposition tech-
niques outlined in section 2, the full pressure field data was
exported to text files containing column vectors for the cell
centroid coordinates [x,y,z] and their corresponding static
pressures p. In order to optimize network transfer and disk
space, data was exported only after each five time steps,
in order to obtain a sampling frequency of 190 kHz, more
than enough to apply the Nyquist criterion in order to isolate
acoustically-relevant information.

However, since the cells of the impeller and diffuser re-
gions are rotating, the spatial coordinates of each pressure
snapshot do not remain constant. As the decomposition proce-
dures require constant spatial coordinates in order to provide
a meaningful result, a previous step needs to be performed
on the raw data.

In this preliminary step, a single snapshot of the mesh cells
coordinates was selected as spatial reference, specifically the
first one obtained. Then, a subset of 2× 106 reference cells
was chosen at random, in order to reduce the computational
cost yet still provide adequate spatial resolution.

For each subsequent snapshot, the coordinates of the cell
centroids, that will have changed due to the rotation of the
mesh, are inspected to identify amongst them the nearest
neighbour of each of the reference coordinates. To optimize
the computation, raw coordinates from each new snapshot
are firstly organized into a k−d tree data structure [59]. A

k−d tree nearest neighbour searcher algorithm [60] is then
used to obtain the indices of the new snapshot cells that best
match the reference coordinates, along with their Euclidean
distances di to these reference coordinates.

From these points however, we have excluded those be-
longing to the impeller, since the blade passing introduces
a discontinuity in the cells pressure records that in turn pro-
duces spurious results when the decomposition procedure is
applied. The filtering out of the impeller region is done by
removing cells that have, simultaneously, a height lower than
the blades leading edges (zi < zLE) and a distance from the
axis lower than the wheel outer radius

�

x2
i + y2

i < r2
O

�

.
A final sanity check is then performed to only keep cells

whose distance di to the corresponding reference cell is lower
than 1 mm, in order to ensure suitable spatial consistency.
Once that all suitable cells of the snapshot are found, their
pressure values are stored in the corresponding vector vi .
Positions in this vector that failed any of the sanity checks are
filled with NaN values.

When the snapshot matrix V is then assembled, rows with
NaN values are culled, thus obtaining a matrix of consistent,
continuous pressure records at fixed locations. Note that if
a variable time step approach is preferred, a further time
domain interpolation would be needed in order to keep the
sampling interval constant.

4. Results and discussion

Once that the results from the simulation were validated,
a preliminary analysis of the raw pressure field was carried
out, in order to assess the presence of spinning-mode-like
structures. In Fig. 5 the pressure field of the inlet duct near
the compressor is represented. Cross-section slices have been

Spiral pattern

150 mm

200 mm

100 mm

50 mm

20 mm
25 mm

30 mm
35 mm

Aerodynamic
blade loading

97    101   105
Pressure [kPa]

Figure 5: Raw pressure field in the inlet duct, with selected
cross-sections highlighted. Each slice is marked with its z
coordinate, measured from the bottom of the wheel.
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Figure 6: Raw outlet pressure field. Slice positions are mea-
sured from the end of the volute. Streamlines shaded by
velocity magnitude are included to showcase the difference
between inlet and outlet flow development.

extracted at 50 mm (1.2 ø) intervals, while another set at the
top shows slices extracted each 5 mm, with the first one 3 mm
downstream of the leading edges. The impeller hub is also
present in the center of the first three of these slices.

While a certain spiral pattern similar to those of the the-
oretical Tyler–Sofrin modes can be noticed, especially close
to the wheel, cross-section pressure patterns along the duct
do not bear a close resemblance to the theoretical model dis-
cussed in section 2.1. Inspection of these duct slices seems to
suggest the presence of three or four maxima and minima at
each section, hinting at the propagation of an m= 4 modal
structure, although intermixed with other patterns.

On the other hand, the most downstream slice at the
top of the figure shows clearly the aerodynamic loading of
the impeller blades themselves. As the operation point is
set at the precise onset of flow instabilities, regions of high
pressure can be observed along the periphery of the inducer,
more pronounced in the center of some of the channels, and
consistent with fluid cells of recirculating backflow cells with
null axial velocity. However, in the subsequent upstream
slices separated just by 5 mm, the distinct pressure pattern
of the blades rapidly fades into a less clear one, as many
hydrodynamic components cannot propagate.

This lack of clarity in the pressure pattern is exacerbated
in the outlet duct, as seen in Fig. 6, where again the pressure
fluctuations at the wall and some selected cross-section slices
are presented. In this case examination of the oscillations
fails to suggest a coherent number of cross-section maxima,
nor a clear spiral modal pattern.

It must be taken into account however that in the case of
the compressor outlet, theoretical assumptions made during
the discussion of the analytical modes are not preserved. In
particular, the duct cross section does not have a direct line of
sight of the rotating aerodynamic loading of the blades, nor

is the flow fully developed.
The later is demonstrated in Fig. 6 by plotting the flow

streamlines, coloured by velocity magnitude. While in the
inlet the streamlines are parallel indicating a developed flow,
it can be seen how the flow is accelerated in the diffuser and
then, as it meets the volute, starts a swirling movement.

Velocity of this swirling flow is higher at the start of the
volute next to the tongue, where the cross-section is smaller,
and then the swirling flow undergoes a deceleration as it
travels along the volute and through the outlet duct. Yet, at
more than 150 mm (3.6 ø) from the beginning of the outlet
duct, the swirling of the flow is shown to continue.

4.1. Tyler–Sofrin decomposition

As a first step towards understanding the structure of
sound transmission through the ducts, the classical Tyler–
Sofrin modal decomposition was performed, following specif-
ically the method proposed by Banica & Limacher [21, 22], in
which modal distributions ϕm(r j) are obtained at discretized
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Figure 7: Tyler–Sofrin modal amplitudes Amn reconstructed for
both the BPF (top plot) the 2 BPF (bottom plot).

9



radial positions r j by means of circumferential Fourier trans-
forms, allowing the least-squares estimation of Amn by:

ϕm(r j) =
N
∑

n=0

Amn Jm

�

κmn

r j

R

�

(18)

Results plotted in Fig. 7 show for instance that clear (4, 0)
mode comprises most of the BPF amplitude, represented on
the top plot. Even thought that one would expect a m = 6
mode to be dominant due to the number of compressor blades,
the cut-off frequency for the particular duct and operating
settings is too low to allow the transmission of this mode
through the duct.

However, since the axial position of the slice is very close
to the blades, it can be seen that the (5,0) and (6,0) modes
are still not fully attenuated, indicating that excitation is in-
deed present with these pressure patterns, even if unable to
propagate upstream the compressor. This agrees with the
first inspection of the raw pressure field of Fig. 5, particularly
focusing on the difference between the first and the last slices.

In the 2 BPF modal amplitudes shown in the bottom plot
of Fig. 7, energy is shared between (10, 0) and several other
modes. Amplitudes Amn in this case are an order of magnitude
lower with respect to the BPF, in agreement with experimental
measurements in which the 2 BPF tone was not detected by
the inlet sensors, only by the outlet ones. The reason behind
such lesser 2 BPF amplitude at the inlet is not immediately
evident in light of the information offered by the Tyler–Sofrin
decomposition; this will need to be revisited with the aid of
the dynamic mode composition.

4.2. Spectrum of DMD modes

Following the assembly of the snapshot matrix VN
1 from

the CFD data, the DMD procedure outlined in section 2.2
was applied. The resulting DMD modes Φi were ordered by
their associated frequency and ranked using a normalized Kou
& Zhang’s criterion. The resulting mode ranking is plotted

in Fig. 8, where ‘peaking’ modes near or above 0.5 in the
normalized metric are highlighted.

We have selected six of those prominent DMD modes,
covering frequencies between, approximately, 1 and 32 kHz.
In addition, cut-off frequencies for theoretical (m, n) Tyler–
Sofrin mode propagation at both inlet and outlet ducts were
calculated and indicated on top of the figure.

Two of the selected modes, Φ229 and Φ283, can be seen to
lie inside the plane wave range for both inlet and outlet ducts.
The rest of the modes contain the 3D pressure fluctuations;
among these the most prominent are clearly related to the BPF
at ∼ 16 kHz (Φ117) and the second BPF harmonic at ∼ 32 kHz
(Φ811), matching literature results [21, 61, 62].

Remarkably, DMD is shown to highlight the importance of
the rotating pressure pattern induced aerodynamically by the
blades without any previous theoretical assumption or in fact
any information about the flow field other than the snapshot
matrix V. It can be seen that for the BPF and the 2 BPF, mmax
is 4 and 10 respectively in agreement with the Tyler–Sofrin
calculation shown in Fig. 7. In this case however, their mode
amplitude is equal, unlike with the aforementioned Tyler–
Sofrin results at the duct section. This is due to the advantage
of DMD being able to consider the whole domain at once,
although DMD could be performed with just duct data if only
propagating acoustic components were sought.

In addition to the pure BPF modes that previous investiga-
tions have focused on, DMD also highlights modal structures
at different frequencies that do not respond to a previous
theoretical assumption. Apart from the well-known BPF and
plane wave modes, some coherent structures are shown to ap-
pear at ∼ 11 kHz (Φ147) and at ∼ 27 kHz (Φ475), signified by
modes that stand apart from the rest of the modal spectrum.

Besides the aforementioned significant modes that stand
above the DMD spectrum, it can also be observed in Fig. 8
that the significant bulk of the modal energy—shown as grey
bars—appears to be concentrated on the frequency range
below 30 kHz (this is, below the second harmonic of the BPF)
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with only some modes slightly peaking near the 50 kHz mark.
Comparing the modes generated automatically by DMD

against the theoretical cut-off frequencies for the traditional
Tyler–Sofrin modes displayed on top of Fig. 8, it can be seen
that despite the BPF excitation pattern, only modes up to (4, 1)
can be theoretically propagated upstream through the inlet
duct, whereas in the outlet case, (2, 0) or (2, 1) modes could
be found. This remarks the added complexity brought by the
volute, since transmission of the same excitation pattern must
necessarily conform to different cut-off conditions.

Following this line of thought, it is perhaps more telling
to consider mode Φ147, containing the flow structures with

an excitation frequency of ∼ 11 kHz. This mode should only
be able to propagate through the outlet duct in the manner
of the (1, 0) Tyler–Sofrin mode, as cut-in frequencies for the
rest of the theoretical modes were higher. In the following
subsection however, this hypothesis will be compared against
spatial results offered by DMD.

4.3. Spatial distribution of DMD modes

As seen in subsection 2.2, the spatial distribution of the
energy of flow structures pulsating with a certain frequency f
is contained in the Φi(x , y, z) values of the DMD mode whose
corresponding eigenvalue λi is related with f by Eq. 13. In

𝚽229 (1 kHz)

𝚽i > 0

𝚽283 (2 kHz)

𝚽147 (11 kHz) 𝚽117 (16 kHz) ~ BPF

𝚽475 (27 kHz) 𝚽811 (32 kHz) ~ 2 BPF

Reduced 
inlet propagation

Classical inlet
propagation

Spiral growth at volute

Plane wave

Full wall values
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inlet patterns

3D modal
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Internal 3D
structures 
decay at ducts
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& outlet pattern

Figure 9: Analysis of selected 3D modal shapes resulting from DMD, with an isovolume of positive values to visualize internal structures
and also (in smaller insets) mapping the whole range of values onto a color gradient to show relative spatial amplitude differences.
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Fig. 9 these Φi(x , y, z) values are plotted for the most relevant
modes, as discussed previously.

Two representations of these values have been chosen.
By plotting in uniform color the 3D isovolume of all positive
values (Φi > 0), the internal structure of each acoustic mode
is clearly revealed. However, this visualization technique does
not allow for quantification of the attenuation at different
locations, hence why each mode in Fig. 9 is accompanied by
an inset showing a graded scale of the surface values, from
min(Φi) to max(Φi), normalized for each mode.

Inspecting the spatial distribution of energy in these se-
lected modes, one can clearly appreciate the plane wave prop-
agation in the inlet and outlet ducts of DMD modes Φ229 and
Φ283, which is consistent with the theoretical model. Complex
pulsating structures arise in the inducer and the volute, as the
hydrodynamic fluctuations there are taken into account by
DMD, illustrating thus the hydrodynamic/acoustic splitting.

For higher frequency modes, 3D propagation through the
ducts becomes apparent. It is interesting to revisit the pre-
vious assumption regarding Φ147 outlet transmission, as it is
seen now that a more complex pattern than (1, 0) is in effect,
highlighting the swirling effect of the volute that impacts the
theoretical assumptions. Of note are as well the two different
inlet patterns, probably due to the pulsating sources at this fre-

quency being established by recirculation bubbles [51] being
‘chopped’ by the leading edges [63], with a different upstream
propagation pattern as imposed by cut-off frequencies outside
the recirculation.

This effect is absent from Φ117, which at ∼ 16 kHz gathers
the BPF tonal noise distribution. In this case, a classical rotat-
ing pattern can be appreciated in the inlet, closely matching
for instance those shown in Fig. 1. Inspection of the internal
structure however reveals a spiral growth of the pulsating
structure as the flow traverses the volute, establishing a more
complex pattern in the volute and outlet duct walls.

As the frequency of the flow structures gathered in each
mode increases, such as in Φ475 and Φ811 (2 BPF), we can
again observe these complex volute and outlet patterns, in
contrast with more classical structures in the inlet. However,
inlet propagation for these modes appears highly attenuated
in comparison with the outlet even if the characteristic spiral
structure is still faintly present. This matches the experimen-
tal observations described in subsection 3.2, as well as the
much lower Tyler–Sofrin modal amplitudes shown in Fig. 7,
offering a more comprehensive understanding of the spatial
distribution of the 2 BPF pulsation. Yet, it is still not quite
clear which is the exact flow mechanism that explains this
reduced inlet propagation.

𝚽475 (27 kHz) 𝚽811 (32 kHz)𝚽117 (16 kHz)

𝚽229 (1 kHz) 𝚽147 (11 kHz)𝚽283 (2 kHz)

Prevalence 
of diffuser
over LEs

Most energy
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no volute influence
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of the volute 
outlet 

Top energetic 
structures at LEs, 
diffuser and volute

Energy tends to
gather at higher
volute radii 

95% pctl.

5% pctl.

Figure 10: Isovolumes representing percentiles 5% and 95% of the spatial energy distribution for the selected DMD modes.
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In order to gain further insight into these flow mechanisms
that drive the propagation of the acoustic modes, we can
isolate those values among the spatial energy of each mode
Φi(x , y, z) that account for the 5% and 95% percentiles of
their distribution. Isovolumes of those values, representing
thus highly energetic flow regions pulsating at the different
mode frequencies, are shown in Fig. 10.

It can be seen that for modes Φ229 and Φ283 whose charac-
teristic frequency will lead to plane wave propagation, most
of the sources are located in the volute and near the blade
leading edges. Pulsating energy gathers at higher volute radii—
almost the whole volute is pulsating in unison inΦ229 whereas
for Φ283 alternating high and low regions are present as the
volute grows. This alternation is more pronounced immedi-
ately upstream the leading edges; in both modes one side of
the wheel presents more pulsating energy than the other, a
possible sign of stall inception at a specific location.

On the other hand, the most energetic flow regions for
the next highlighted mode, Φ147, are mostly gathered at the
diffuser, in large alternating patches, and at the leading edges
of the wheel, where around ten cells of opposite amplitude are
found. This may be correlated with the frequency of the mode,
and seems to indicate a source flow phenomenon related to
each channel, including the splitters. No significant influence
of the volute is found for this particular mode, in contrast
with the others.

Perhaps the most clear mode of Fig. 10 is Φ117, spanning
the flow features associated to the BPF frequency. Twelve fluid
cells of alternating pressure pulsation are found attached to
the blades, in a pattern matching the raw aerodynamic loading
depicted in Fig. 5. A similar number of alternating regions is
established in the diffuser, with a swirling structure of maxima
and minima traversing the higher radii of the volute and
continuing orderly along the outlet duct.

A more complex scattering of the modal energy is shown
for Φ475; in this case high amplitude fluid cells at the leading
edges are much smaller and limited to the outer radius. Sim-
ilarly, a reduced number of small cells are shown attached
to the trailing edges, without spanning across the diffuser.
Most of the energetic fluid regions for this frequency are gath-
ered instead at the larger radii of the volute, in coherence
with the results from Fig. 9 where the volute and outlet wall
amplitudes much more relevant than the inlet’s.

Lastly, mode Φ811 shows the distribution of the fluctuating
sources associated to the 2 BPF. In this case, no high energy
regions are detected near the leading edges; most of the
energy is established in a clear pattern in the diffuser, where
alternating cells are attached in pairs to each trailing edge
of the main blades and splitters. This absence of ∼ 32 kHz
fluctuations upstream the impeller finally offers a physical
explanation for both the lack of amplitude shown in Fig. 9
and the reduced Tyler–Sofrin modal amplitudes evinced in
Fig. 7, thus highlighting the usefulness of the DMD technique.

5. Conclusions

In this paper, we have analyzed in depth the acoustic
field of a radial compressor with volute, by applying different
modal decomposition techniques to pressure data generated
by a Detached Eddy Simulation of the system operating at
the onset of flow instabilities that lead to partially stalled
conditions.

On one hand, we have applied the classical Tyler–Sofrin
model of acoustic mode propagation through circular ducts.
This time-proven technique has the advantage of being exper-
imentally realizable even with a low number of sensors, as
demonstrated recently by Limacher et al. [21].

However, it relies on a number of assumptions as to the
flow development and homogeneity, the constant geometry of
the ducts, the location of the rotating pressure pattern, and so
on. In addition, the data-gathering is performed at particular
slices, assuming that modal remain constant along the duct.
In the specific case of radial compressors, many of those do not
hold true, especially with complex ducts and volutes. Thus,
elucidating the influence of those complex geometries on the
spectral signature of the compressor through the Tyler–Sofrin
approach becomes a difficult endeavour.

On the other hand, once that a reliable numerical simu-
lation of the compressor has been obtained, the use of data-
driven, assumptions-free modal decomposition techniques
such as DMD offers a comprehensive, actionable understand-
ing of the relation between the spatial features of the flow and
the acoustic emission at different frequencies. By being able
to take into account the pressure information of the whole
domain at once, including inside complex geometries such as
the diffuser, volute, curved ducts, etc., the overall amplitude
for each frequency is better characterized according to the
overall pulsating energy available in the flow.

In the specific case of radial compressors with volutes
or manifolds, it has been shown in this investigation that
for many frequencies the most energetic flow features are
confined in the diffuser and volute, where they are not usually
taken into account if Tyler–Sofrin techniques are used. In
addition, complex pulsating spatial patterns not accounted
for with the classical model have been observed, opening
the door to specific modifications of the design in order to
improve the noise level at those frequencies.

Therefore, it can be concluded that as the geometry of
radial compressors becomes more complex due to tighter
packaging requirements, miniaturized engines, recirculating
cavities, ported shrouds, etc., the in-depth understanding
afforded by data-driven approaches such as the one demon-
strated in this paper are posed to become an important tool
in the quest for quieter, more sustainable engines.
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