12 research outputs found
Solving problems : on studentsâ opportunities to solve problems and how teachers can support this process
Generellt sett domineras matematikundervisning av utantillinlĂ€rning och arbete med rutinuppgifter. Om undervisning till störst del görs pĂ„ detta sĂ€tt kommer elever ha svĂ„rt att att utveckla andra viktiga förmĂ„gor i matematik sĂ„som problemlösning, resonemang och begreppsförstĂ„else. Tidigare forskning har visat om elever fĂ„r jobba med problemuppgifter (dvs. skapa egna lösningsmetoder) i större utstrĂ€ckning fĂ„r de en ökad matematisk förstĂ„else, Ă€n om de enbart arbetar med rutinuppgifter. Syftet med avhandlingen var att ge ökade insikter om varför utantillinlĂ€rning och arbete med rutinuppgifter fortsĂ€tter att vara vanligt samt undersöka och föreslĂ„ pĂ„ vilket sĂ€tt elevers förutsĂ€ttningar att jobba med problemuppgifter skulle kunna förbĂ€ttras. Detta gjordes genom följande studier. (1) Relationen mellan vilka typer av lösningsstrategier (imitera eller skapa lösningsmetod) som krĂ€vdes och vilka som anvĂ€ndes vid uppgiftslösning. (2) Relationen mellan elevers val av lösningsstrategi och uppfattningar om matematik. (3) Undersökning av andel problemuppgifter i lĂ€roböcker frĂ„n 12 lĂ€nder. (4) KaraktĂ€risering av tidigare forskning med avseende pĂ„ undervisning genom problemlösning och resonemang. (5) Interventionsstudie dĂ€r ett lĂ€rarstöd, utformat för att stödja elevers problemlösning med hjĂ€lp av formativ bedömning, utvecklades, testades och utvĂ€rderades. Studierna fokuserade i första hand pĂ„ skolans senare Ă„rskurser. Elevernas förutsĂ€ttningar att lösa uppgifter genom problemlösning var begrĂ€nsad: av att det var mycket ovanligt med problemuppgifter bland de enklare uppgifterna i lĂ€roböckerna, av elevernas val att anvĂ€nda sig av imitativa lösningsstategier och av att eleverna ofta kunde lösa uppgifter genom att lotsas fram till en lösning av en annan elev eller av lĂ€raren. Elevernas förutsĂ€ttningar begrĂ€nsades ocksĂ„ av elevernas uppfattningar av matematik och av elever ibland arbetade med uppgifter som inte var inom rĂ€ckhĂ„ll att lösas genom problemlösning. För att ge elever förbĂ€ttrade förutsĂ€ttningar att lösa problemuppgifter bör lĂ€rare lĂ„ta elever arbeta med fler problemuppgifter i en lĂ€randemiljö som innebĂ€r att elever faktiskt skapar egna lösningsmetoder och att lĂ€rarhjĂ€lp baseras pĂ„ att stödja elever utifrĂ„n elevers svĂ„righeter och inte lotsa fram till en lösning. Resultatet ger ocksĂ„ implikationer för hur lĂ€roböcker kan struktureras och hur det testade lĂ€rarstödet skulle kunna vara en del av en proffessionsutveckling och en del av lĂ€rarutbildningen.In mathematics education, there is generally too much emphasis on rote learning and superficial reasoning. If learning is mostly done by rote and imitation, important mathematical competencies such as problem-solving, reasoning, and conceptual understanding are not developed. Previous research has shown that students who work with problems (i.e. constructs a new solution method to a task), to a greater extent increase their mathematical understanding than students who only solve routine tasks. The aim of the thesis was to further understand why teaching is dominated by rote learning and imitation of procedures and investigate how opportunities for students to solve tasks through problem-solving could be improved. This was done through the following studies. (1) Investigating the relation between types of solution strategy required, used, and the rate of correct task solutions in studentsâ textbook task-solving. (2) Studying the relationship between studentsâ beliefs and choice of solution strategy when working on problems. (3) Conducting a textbook analysis of mathematics textbooks from 12 countries, to determine the proportions of tasks that could be solved by mimicking available templates and of tasks where a solution had to be constructed without guidance from the textbook. (4) Conducting a literature review in order to characterize teaching designs intended to enhance students to develop mathematical understanding through problem solving and reasoning. (5) Conducting an intervention study were a teacher guide, structured in line with central tenets of formative assessment, was developed, tested, and evaluated in real classroom settings. The teacher guide was designed to support teachers in their support of studentsâ in their problem-solving process. Studies I, II and V were conducted in Swedish upper secondary school settings. The studentsâ opportunities to solve tasks through problem-solving were limited: by the low proportion of problems among the easier tasks in the textbooks; by the students' choice of using imitative solution strategies; and by the guidance of solution methods that students received from other students and their teachers. The studentsâ opportunities were also limited by the students' beliefs of mathematics and the fact that a solution method of problem tasks was not always within reach for the students, based on the students' knowledge. In order to improve studentsâ opportunities, teachers should allow students to work with more problems in a learning environment that lets students engage in problem-solving and support students' work on problems by adapting their support to students' difficulties. The results also give implications for the construction and use of textbooks and how the use of the teacher guide could be part of teachersâ professional development and a tool that teacher students may meet within their education.LĂ€rande genom imitativa och kreativa resonemang (LICR
Solving problems : on studentsâ opportunities to solve problems and how teachers can support this process
Generellt sett domineras matematikundervisning av utantillinlĂ€rning och arbete med rutinuppgifter. Om undervisning till störst del görs pĂ„ detta sĂ€tt kommer elever ha svĂ„rt att att utveckla andra viktiga förmĂ„gor i matematik sĂ„som problemlösning, resonemang och begreppsförstĂ„else. Tidigare forskning har visat om elever fĂ„r jobba med problemuppgifter (dvs. skapa egna lösningsmetoder) i större utstrĂ€ckning fĂ„r de en ökad matematisk förstĂ„else, Ă€n om de enbart arbetar med rutinuppgifter. Syftet med avhandlingen var att ge ökade insikter om varför utantillinlĂ€rning och arbete med rutinuppgifter fortsĂ€tter att vara vanligt samt undersöka och föreslĂ„ pĂ„ vilket sĂ€tt elevers förutsĂ€ttningar att jobba med problemuppgifter skulle kunna förbĂ€ttras. Detta gjordes genom följande studier. (1) Relationen mellan vilka typer av lösningsstrategier (imitera eller skapa lösningsmetod) som krĂ€vdes och vilka som anvĂ€ndes vid uppgiftslösning. (2) Relationen mellan elevers val av lösningsstrategi och uppfattningar om matematik. (3) Undersökning av andel problemuppgifter i lĂ€roböcker frĂ„n 12 lĂ€nder. (4) KaraktĂ€risering av tidigare forskning med avseende pĂ„ undervisning genom problemlösning och resonemang. (5) Interventionsstudie dĂ€r ett lĂ€rarstöd, utformat för att stödja elevers problemlösning med hjĂ€lp av formativ bedömning, utvecklades, testades och utvĂ€rderades. Studierna fokuserade i första hand pĂ„ skolans senare Ă„rskurser. Elevernas förutsĂ€ttningar att lösa uppgifter genom problemlösning var begrĂ€nsad: av att det var mycket ovanligt med problemuppgifter bland de enklare uppgifterna i lĂ€roböckerna, av elevernas val att anvĂ€nda sig av imitativa lösningsstategier och av att eleverna ofta kunde lösa uppgifter genom att lotsas fram till en lösning av en annan elev eller av lĂ€raren. Elevernas förutsĂ€ttningar begrĂ€nsades ocksĂ„ av elevernas uppfattningar av matematik och av elever ibland arbetade med uppgifter som inte var inom rĂ€ckhĂ„ll att lösas genom problemlösning. För att ge elever förbĂ€ttrade förutsĂ€ttningar att lösa problemuppgifter bör lĂ€rare lĂ„ta elever arbeta med fler problemuppgifter i en lĂ€randemiljö som innebĂ€r att elever faktiskt skapar egna lösningsmetoder och att lĂ€rarhjĂ€lp baseras pĂ„ att stödja elever utifrĂ„n elevers svĂ„righeter och inte lotsa fram till en lösning. Resultatet ger ocksĂ„ implikationer för hur lĂ€roböcker kan struktureras och hur det testade lĂ€rarstödet skulle kunna vara en del av en proffessionsutveckling och en del av lĂ€rarutbildningen.In mathematics education, there is generally too much emphasis on rote learning and superficial reasoning. If learning is mostly done by rote and imitation, important mathematical competencies such as problem-solving, reasoning, and conceptual understanding are not developed. Previous research has shown that students who work with problems (i.e. constructs a new solution method to a task), to a greater extent increase their mathematical understanding than students who only solve routine tasks. The aim of the thesis was to further understand why teaching is dominated by rote learning and imitation of procedures and investigate how opportunities for students to solve tasks through problem-solving could be improved. This was done through the following studies. (1) Investigating the relation between types of solution strategy required, used, and the rate of correct task solutions in studentsâ textbook task-solving. (2) Studying the relationship between studentsâ beliefs and choice of solution strategy when working on problems. (3) Conducting a textbook analysis of mathematics textbooks from 12 countries, to determine the proportions of tasks that could be solved by mimicking available templates and of tasks where a solution had to be constructed without guidance from the textbook. (4) Conducting a literature review in order to characterize teaching designs intended to enhance students to develop mathematical understanding through problem solving and reasoning. (5) Conducting an intervention study were a teacher guide, structured in line with central tenets of formative assessment, was developed, tested, and evaluated in real classroom settings. The teacher guide was designed to support teachers in their support of studentsâ in their problem-solving process. Studies I, II and V were conducted in Swedish upper secondary school settings. The studentsâ opportunities to solve tasks through problem-solving were limited: by the low proportion of problems among the easier tasks in the textbooks; by the students' choice of using imitative solution strategies; and by the guidance of solution methods that students received from other students and their teachers. The studentsâ opportunities were also limited by the students' beliefs of mathematics and the fact that a solution method of problem tasks was not always within reach for the students, based on the students' knowledge. In order to improve studentsâ opportunities, teachers should allow students to work with more problems in a learning environment that lets students engage in problem-solving and support students' work on problems by adapting their support to students' difficulties. The results also give implications for the construction and use of textbooks and how the use of the teacher guide could be part of teachersâ professional development and a tool that teacher students may meet within their education.LĂ€rande genom imitativa och kreativa resonemang (LICR
Solving problems : on studentsâ opportunities to solve problems and how teachers can support this process
Generellt sett domineras matematikundervisning av utantillinlĂ€rning och arbete med rutinuppgifter. Om undervisning till störst del görs pĂ„ detta sĂ€tt kommer elever ha svĂ„rt att att utveckla andra viktiga förmĂ„gor i matematik sĂ„som problemlösning, resonemang och begreppsförstĂ„else. Tidigare forskning har visat om elever fĂ„r jobba med problemuppgifter (dvs. skapa egna lösningsmetoder) i större utstrĂ€ckning fĂ„r de en ökad matematisk förstĂ„else, Ă€n om de enbart arbetar med rutinuppgifter. Syftet med avhandlingen var att ge ökade insikter om varför utantillinlĂ€rning och arbete med rutinuppgifter fortsĂ€tter att vara vanligt samt undersöka och föreslĂ„ pĂ„ vilket sĂ€tt elevers förutsĂ€ttningar att jobba med problemuppgifter skulle kunna förbĂ€ttras. Detta gjordes genom följande studier. (1) Relationen mellan vilka typer av lösningsstrategier (imitera eller skapa lösningsmetod) som krĂ€vdes och vilka som anvĂ€ndes vid uppgiftslösning. (2) Relationen mellan elevers val av lösningsstrategi och uppfattningar om matematik. (3) Undersökning av andel problemuppgifter i lĂ€roböcker frĂ„n 12 lĂ€nder. (4) KaraktĂ€risering av tidigare forskning med avseende pĂ„ undervisning genom problemlösning och resonemang. (5) Interventionsstudie dĂ€r ett lĂ€rarstöd, utformat för att stödja elevers problemlösning med hjĂ€lp av formativ bedömning, utvecklades, testades och utvĂ€rderades. Studierna fokuserade i första hand pĂ„ skolans senare Ă„rskurser. Elevernas förutsĂ€ttningar att lösa uppgifter genom problemlösning var begrĂ€nsad: av att det var mycket ovanligt med problemuppgifter bland de enklare uppgifterna i lĂ€roböckerna, av elevernas val att anvĂ€nda sig av imitativa lösningsstategier och av att eleverna ofta kunde lösa uppgifter genom att lotsas fram till en lösning av en annan elev eller av lĂ€raren. Elevernas förutsĂ€ttningar begrĂ€nsades ocksĂ„ av elevernas uppfattningar av matematik och av elever ibland arbetade med uppgifter som inte var inom rĂ€ckhĂ„ll att lösas genom problemlösning. För att ge elever förbĂ€ttrade förutsĂ€ttningar att lösa problemuppgifter bör lĂ€rare lĂ„ta elever arbeta med fler problemuppgifter i en lĂ€randemiljö som innebĂ€r att elever faktiskt skapar egna lösningsmetoder och att lĂ€rarhjĂ€lp baseras pĂ„ att stödja elever utifrĂ„n elevers svĂ„righeter och inte lotsa fram till en lösning. Resultatet ger ocksĂ„ implikationer för hur lĂ€roböcker kan struktureras och hur det testade lĂ€rarstödet skulle kunna vara en del av en proffessionsutveckling och en del av lĂ€rarutbildningen.In mathematics education, there is generally too much emphasis on rote learning and superficial reasoning. If learning is mostly done by rote and imitation, important mathematical competencies such as problem-solving, reasoning, and conceptual understanding are not developed. Previous research has shown that students who work with problems (i.e. constructs a new solution method to a task), to a greater extent increase their mathematical understanding than students who only solve routine tasks. The aim of the thesis was to further understand why teaching is dominated by rote learning and imitation of procedures and investigate how opportunities for students to solve tasks through problem-solving could be improved. This was done through the following studies. (1) Investigating the relation between types of solution strategy required, used, and the rate of correct task solutions in studentsâ textbook task-solving. (2) Studying the relationship between studentsâ beliefs and choice of solution strategy when working on problems. (3) Conducting a textbook analysis of mathematics textbooks from 12 countries, to determine the proportions of tasks that could be solved by mimicking available templates and of tasks where a solution had to be constructed without guidance from the textbook. (4) Conducting a literature review in order to characterize teaching designs intended to enhance students to develop mathematical understanding through problem solving and reasoning. (5) Conducting an intervention study were a teacher guide, structured in line with central tenets of formative assessment, was developed, tested, and evaluated in real classroom settings. The teacher guide was designed to support teachers in their support of studentsâ in their problem-solving process. Studies I, II and V were conducted in Swedish upper secondary school settings. The studentsâ opportunities to solve tasks through problem-solving were limited: by the low proportion of problems among the easier tasks in the textbooks; by the students' choice of using imitative solution strategies; and by the guidance of solution methods that students received from other students and their teachers. The studentsâ opportunities were also limited by the students' beliefs of mathematics and the fact that a solution method of problem tasks was not always within reach for the students, based on the students' knowledge. In order to improve studentsâ opportunities, teachers should allow students to work with more problems in a learning environment that lets students engage in problem-solving and support students' work on problems by adapting their support to students' difficulties. The results also give implications for the construction and use of textbooks and how the use of the teacher guide could be part of teachersâ professional development and a tool that teacher students may meet within their education.LĂ€rande genom imitativa och kreativa resonemang (LICR
Mathematical problem solving in textbooks from twelve countries
A selection of secondary school mathematics textbooks from twelve countries on five continents was analysed to better understand the support they might be in teaching and learning mathematical problem solving. Over 5700 tasks were compared to the information provided earlier in each textbook to determine whether each task could be solved by mimicking available templates or whether a solution had to be constructed without guidance from the textbook.There were similarities between the twelve textbooks in the sense that most tasks could be solved using a template as guidance. A significantly lower proportion of the tasks required a solution to be constructed. This was especially striking in the initial sets of tasks.Textbook descriptions indicating problem solving did not guaranteethat a task solution had to be constructed without the support of anavailable template
Supporting teachers in supporting studentsâ mathematical problem solving
The purpose of this intervention study was to develop and evaluate a support model for teachers, designed to assist them in diagnosing studentsâ (age 16â19 years) difficulties and providing feedback to support studentsâ mathematical problem solving. Reporting on an iteration in a design research project, the results showed that the support helped the teachers to provide less procedural information and instead help students construct solutions for themselves. Constraints in achieving this included the nature of some tasks, difficulties in making reasonable diagnoses, and studentsâ inability to communicate their difficulties
Mathematical reasoning and beliefs in non-routine task solving
This paper explores low performing upper secondary school studentsâ mathematical reasoning when solving non-routine tasks in pairs. Their solutions were analysed using a theoretical framework about mathematical reasoning and a model to study beliefs as arguments for choices. The results confirm previous research and three themes of beliefs are used by the student. These themes are safety, expectations, and motivation. The results also show a connection between beliefs and imitative reasoning as a way to solve non-routine tasks
Mathematical reasoning and beliefs in non-routine task solving
This paper explores low performing upper secondary school studentsâ mathematical reasoning when solving non-routine tasks in pairs. Their solutions were analysed using a theoretical framework about mathematical reasoning and a model to study beliefs as arguments for choices. The results confirm previous research and three themes of beliefs are used by the student. These themes are safety, expectations, and motivation. The results also show a connection between beliefs and imitative reasoning as a way to solve non-routine tasks
Initiating teacher-researcher collaboration to support students' mathematical problem-solving
Implementing teaching through mathematical problem-solving entails substantial challenges and calls for sustained teacher-researcher collaboration. The joint research and development project âTeaching that supports studentsâ creative mathematical problem-solvingâ has a fundamental ambition to be symmetric in that both teachersâ and researchersâ needs and conditions are attended to and complementary in that their different areas of expertise are utilised and valued. In this paper we show how the interplay and development of symmetry and complementarity can function as a means for studying teacher-researcher collaborations
Initiating teacher-researcher collaboration to support students' mathematical problem-solving
Implementing teaching through mathematical problem-solving entails substantial challenges and calls for sustained teacher-researcher collaboration. The joint research and development project âTeaching that supports studentsâ creative mathematical problem-solvingâ has a fundamental ambition to be symmetric in that both teachersâ and researchersâ needs and conditions are attended to and complementary in that their different areas of expertise are utilised and valued. In this paper we show how the interplay and development of symmetry and complementarity can function as a means for studying teacher-researcher collaborations