291 research outputs found

    Ordered Phase of the Dipolar Spin Ice under [110]-Magnetic Fields

    Full text link
    We find that the true ground state of the dipolar spin ice system under [110]-magnetic fields is the ``Q=X'' structure, which is consistent with both experiments and Monte Carlo simulations. We then perform a Monte Carlo simulation to confirm that there exists a first order phase transition under the [110]-field. In particular this result indicates the existence of the first order phase transition to the ``Q=X'' phase in the field above 0.35 T for Dy2Ti2O7. We also show the magnetic field-temperature phase diagram to summarize the ordered states of this system.Comment: 4 pages, 5 figures, in RevTex4, submitted to J. Phys. Soc. Jp

    Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet

    Full text link
    A rare example of a two dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it is probably the first genuinely two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations normally found only in one-dimensional systems. In some limits it decouples into non-interacting chains, purely dynamically and not because of weakening of interchain couplings: indeed, paradoxically, this happens in the limit of strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Ordering of the pyrochlore Ising model with the long-range RKKY interaction

    Full text link
    The ordering of the Ising model on a pyrochlore lattice interacting via the long-range RKKY interaction, which models a metallic pyrochlore magnet such as Pr_2Ir_2O_7, is studied by Monte Carlo simulations. Depending on the parameter k_F representing the Fermi wavevector, the model exhibits rich ordering behaviors

    Sigma-2: Multiple sequence alignment of non-coding DNA via an evolutionary model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While most multiple sequence alignment programs expect that all or most of their input is known to be homologous, and penalise insertions and deletions, this is not a reasonable assumption for non-coding DNA, which is much less strongly conserved than protein-coding genes. Arguing that the goal of sequence alignment should be the detection of <it>homology </it>and not <it>similarity</it>, we incorporate an evolutionary model into a previously published multiple sequence alignment program for non-coding DNA, Sigma, as a sensitive likelihood-based way to assess the significance of alignments. Version 1 of Sigma was successful in eliminating spurious alignments but exhibited relatively poor sensitivity on synthetic data. Sigma 1 used a <it>p</it>-value (the probability under the "null hypothesis" of non-homology) to assess the significance of alignments, and, optionally, a background model that captured short-range genomic correlations. Sigma version 2, described here, retains these features, but calculates the <it>p</it>-value using a sophisticated evolutionary model that we describe here, and also allows for a transition matrix for different substitution rates from and to different nucleotides. Our evolutionary model takes separate account of mutation and fixation, and can be extended to allow for locally differing functional constraints on sequence.</p> <p>Results</p> <p>We demonstrate that, on real and synthetic data, Sigma-2 significantly outperforms other programs in specificity to genuine homology (that is, it minimises alignment of spuriously similar regions that do not have a common ancestry) while it is now as sensitive as the best current programs.</p> <p>Conclusions</p> <p>Comparing these results with an extrapolation of the best results from other available programs, we suggest that conservation rates in intergenic DNA are often significantly over-estimated. It is increasingly important to align non-coding DNA correctly, in regulatory genomics and in the context of whole-genome alignment, and Sigma-2 is an important step in that direction.</p

    Dipolar Interactions and Origin of Spin Ice in Ising Pyrochlore Magnets

    Full text link
    Recent experiments suggest that the Ising pyrochlore magnets Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}} and Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} display qualitative properties of the spin ice model proposed by Harris {\it et al.} \prl {\bf 79}, 2554 (1997). We discuss the dipolar energy scale present in both these materials and consider how they can display spin ice behavior {\it despite} the presence of long range interactions. Specifically, we present numerical simulations and a mean field analysis of pyrochlore Ising systems in the presence of nearest neighbor exchange and long range dipolar interactions. We find that two possible phases can occur, a long range ordered antiferromagnetic one and the other dominated by spin ice features. Our quantitative theory is in very good agreement with experimental data on both Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}} and Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}}. We suggest that the nearest neighbor exchange in Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} is {\it antiferromagnetic} and that spin ice behavior is induced by long range dipolar interactions.Comment: 4 postscript figures included. Submitted to Physical Review Letters Contact: [email protected]

    Spin Driven Jahn-Teller Distortion in a Pyrochlore system

    Full text link
    The ground-state properties of the spin-1 antiferromagnetic Heisenberg model on the corner-sharing tetrahedra, pyrochlore lattice, is investigated. By breaking up each spin into a pair of 1/2-spins, the problem is reduced to the equivalent one of the spin-1/2 tetrahedral network in analogy with the valence bond solid state in one dimension. The twofold degeneracy of the spin-singlets of a tetrahedron is lifted by a Jahn-Teller mechanism, leading to a cubic to tetragonal structural transition. It is proposed that the present mechanism is responsible for the phase transition observed in the spin-1 spinel compounds ZnV2_2O4_4 and MgV2_2O4_4.Comment: 4 pages, 3 eps figures, REVTeX, to appear in Phys. Rev. Let

    Non-regular eigenstate of the XXX model as some limit of the Bethe state

    Full text link
    For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations, and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It was pointed out by many authors that the non-regular eigenvectors should correspond to the Bethe ansatz wavefunctions which have multiple infinite rapidities. However, it has not been explicitly shown whether such a delicate limiting procedure should be possible. In this paper, we discuss it explicitly in the level of wavefunctions: we prove that any non-regular eigenvector of the XXX model is derived from the Bethe ansatz wavefunctions through some limit of infinite rapidities. We formulate the regularization also in terms of the algebraic Bethe ansatz method. As an application of infinite rapidity, we discuss the period of the spectral flow under the twisted periodic boundary conditions.Comment: 53 pages, no figur
    corecore