We report a study of the low temperature bulk magnetic properties of the spin
ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing
transition. While this transition is superficially similar to that in a spin
glass, there are important qualitative differences from spin glass behavior:
the freezing temperature increases slightly with applied magnetic field, and
the distribution of spin relaxation times remains extremely narrow down to the
lowest temperatures. Furthermore, the characteristic spin relaxation time
increases faster than exponentially down to the lowest temperatures studied.
These results indicate that spin-freezing in spin ice materials represents a
novel form of magnetic glassiness associated with the unusual nature of
geometrical frustration in these materials.Comment: 24 pages, 8 figure