43 research outputs found

    Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains

    Get PDF
    Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore-forming, Gram-negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) an unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) a phylogenetic position that is distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9T contains 1,720 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small subunit rRNA (16S) locus

    Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia and myocarditis are the most commonly reported diseases due to <it>Histophilus somni</it>, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in <it>H. somni </it>using traditional methods. Analyses of the genome sequences of several <it>Pasteurellaceae </it>species have provided insights into their biology and evolution. In view of the economic and ecological importance of <it>H. somni</it>, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the <it>Pasteurellaceae</it>.</p> <p>Results</p> <p>The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the <it>Pasteurellaceae</it>, several <it>H. somni </it>genes that may encode proteins involved in virulence (<it>e.g</it>., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor.</p> <p>Conclusions</p> <p>Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two <it>H. somni </it>strains.</p

    Genomics of alkaliphiles

    Get PDF
    Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.https://link.springer.com/bookseries/10hj2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Phaeoacremonium krajdenii, a Cause of White Grain Eumycetoma

    No full text
    We describe the first case of white grain pedal eumycetoma caused by Phaeoacremonium krajdenii in a 41-year-old man from Goa, India. Based on histological examination of biopsy tissue showing serpentine granules, a culture of the granules yielding phaeoid fungal colonies, and morphological characteristics and sequence comparison of the partial β-tubulin gene with the ex-type isolate of P. krajdenii, the causal agent was identified as P. krajdenii

    ``On demand'' redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor

    No full text
    Understanding the mechanisms of antimicrobial resistance (AMR) will help launch a counter-offensive against human pathogens that threaten our ability to effectively treat common infections. Herein, we report bis(4-nitrobenzyl)sulfanes, which are activated by a bacterial enzyme to produce hydrogen sulfide (H2S) gas. We found that H2S helps maintain redox homeostasis and protects bacteria against antibiotic-triggered oxidative stress ``on demand'', through activation of alternate respiratory oxidases and cellular antioxidants. We discovered, a hitherto unknown role for this gas, that chemical inhibition of H2S biosynthesis reversed antibiotic resistance in multidrug-resistant (MDR) uropathogenic Escherichia coli strains of clinical origin, whereas exposure to the H2S donor restored drug tolerance. Together, our study provides a greater insight into the dynamic defence mechanisms of this gas, modes of antibiotic action as well as resistance while progressing towards new pharmacological targets to address AMR

    Clinically relevant variants in a large cohort of Indian patients with Marfan syndrome and related disorders identified by next-generation sequencing

    No full text
    Abstract Marfan syndrome and related disorders are a group of heritable connective tissue disorders and share many clinical features that involve cardiovascular, skeletal, craniofacial, ocular, and cutaneous abnormalities. The majority of affected individuals have aortopathies associated with early mortality and morbidity. Implementation of targeted gene panel next-generation sequencing in these individuals is a powerful tool to obtain a genetic diagnosis. Here, we report on clinical and genetic spectrum of 53 families from India with a total of 83 patients who had a clinical diagnosis suggestive of Marfan syndrome or related disorders. We obtained a molecular diagnosis in 45/53 (85%) index patients, in which 36/53 (68%) had rare variants in FBN1 (Marfan syndrome; 63 patients in total), seven (13.3%) in TGFBR1/TGFBR2 (Loeys–Dietz syndrome; nine patients in total) and two patients (3.7%) in SKI (Shprintzen–Goldberg syndrome). 21 of 41 rare variants (51.2%) were novel. We did not detect a disease-associated variant in 8 (15%) index patients, and none of them met the Ghent Marfan diagnostic criteria. We found the homozygous FBN1 variant p.(Arg954His) in a boy with typical features of Marfan syndrome. Our study is the first reporting on the spectrum of variants in FBN1, TGFBR1, TGFBR2, and SKI in Indian individuals
    corecore