897 research outputs found

    Ultrasound and photoacoustic methods for anatomic and functional imaging in image guided radiation therapy

    Get PDF
    (MATERIAL and METHODS) First, we define the physical principals and optimal protocols that provide contrast when imaging with US and the transducer properties contributing to resolution limits. The US field of view (FOV) was characterized to determine the optimal settings with regard to imaging depth, focal region, with and without harmonic imaging, and artifact identification. This will allow us to determine the minimum errors expected when registering multimodal volumes (CT, US, CBCT). Next, we designed an in-house integrated US manipulator and platform to relate CT, 3D-US and linear accelerator coordinate systems. To validate our platform, an agar-based phantom with measured densities and speed-of-sound consistent with tissues surrounding the bladder was fabricated. This phantom was rotated relative to the CT and US coordinate systems and imaged with both modalities. These CT and 3D-US images were imported into the treatment planning system, where US-to-US and US-to-CT images were co-registered and the registration matrix used to re-align the phantom relative to the linear accelerator. The measured precision in the phantom setup, which is defined by the standard deviation of the transformation matrix components, was consistent with and exceeding acceptable clinical patient re-alignments (2 mm). Statistical errors from US-US registrations for different patient orientations ranged from 0.06-1.66 mm for x, y, and z translational components, and 0.00-1.05 degrees for rotational components. Statistical errors from US-CT registrations were 0.23-1.18 mm for the x, y and z translational components, and 0.08-2.52 degrees for the rotational components. The high precision in the multimodal registrations suggest the ability to use US for patient positioning when targeting abdominal structures. We are now testing this on a dog patient to obtain both inter and intra-fractional positional errors. The objective of this experiment is to confirm Hill’s equation describing the relationship between hemoglobin saturation (SaO2) and the partial pressure of dissolved oxygen (pO2). The relationship is modeled as a sigmoidal curve that is a function of two parameters – the Hill coefficient, n, and the net association constant of HbO2, K (or pO2 at 50% SaO2). The goal is to noninvasively measure SaO2 in breast tumors in mice using photoacoustic computed tomographic (PCT) imaging and compare those measurements to a gold standard for pO2 using the OxyLite probe. First, a calibration study was performed to measure the SaO2 (co-oximeter) and pO2 (Oxylite probe) in blood using Hill’s equation (P50=23.2 mmHg and n=2.26). Next, non-invasive localized measurements of SaO2 in MDA-MD-231 and MCF7 breast tumors using PCT spectroscopic methods were compared to pO 2 levels using Oxylite probe. The fitted results for MCF7 and MDA-MD-231 data resulted in a P50 of 17.2 mmHg and 20.7 mmHg and a n of 1.76 and 1.63, respectively. The lower value of the P50 is consistent with tumors being more acidic than healthy tissue. Current work applying photon fluence corrections and image artifact reduction is expected to improve the quality of the results. In summary, this study demonstrates that photoacoustic imaging can be used to monitor tumor oxygenation, and its potential use to investigate the effectiveness of radiation therapy and the ability to adapt therapeutic protocols

    Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

    Get PDF
    Superscaling analyses of few-GeV inclusive electron scattering from nuclei are extended to include not only quasielastic processes, but now also into the region where Δ\Delta-excitation dominates. It is shown that, with reasonable assumptions about the basic nuclear scaling function extracted from data and information from other studies of the relative roles played by correlation and MEC effects, the residual strength in the resonance region can be accounted for through an extended scaling analysis. One observes scaling upon assuming that the elementary cross section by which one divides the residual to obtain a new scaling function is dominated by the NΔN\to\Delta transition and employing a new scaling variable which is suited to the resonance region. This yields a good representation of the electromagnetic response in both the quasielastic and Δ\Delta regions. The scaling approach is then inverted and predictions are made for charge-changing neutrino reactions at energies of a few GeV, with focus placed on nuclei which are relevant for neutrino oscillation measurements. For this a relativistic treatment of the required weak interaction vector and axial-vector currents for both quasielastic and Δ\Delta-excitation processes is presented.Comment: 42 pages, 9 figures, accepted for publication in Physical Review

    Nuclear corrections of parton distribution functions

    Full text link
    We report global analysis results of experimental data for nuclear structure-function ratios F_2^A/F_2^{A'} and proton-nucleus Drell-Yan cross-section ratios sigma_{DY}^{pA}/sigma_{DY}^{pA'} in order to determine optimum parton distribution functions (PDFs) in nuclei. An important point of this analysis is to show uncertainties of the distributions by the Hessian method. The results indicate that the uncertainties are large for gluon distributions in the whole x region and for antiquark distributions at x>0.2. We provide a code for calculating any nuclear PDFs at given x and Q^2 for general users. They can be used for calculating high-energy nuclear reactions including neutrino-nucleus interactions, which are discussed at this workshop.Comment: 1+6 pages, LaTeX, 10 eps files, espcrc2.sty, to be published in Nucl. Phys. B Supplements, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, Italy, March 17-21, 2004. Nuclear PDF library is available at http://hs.phys.saga-u.ac.jp/nuclp.htm

    A high-precision polarimeter

    Full text link
    We have built a polarimeter in order to measure the electron beam polarization in hall C at JLAB. Using a superconducting solenoid to drive the pure-iron target foil into saturation, and a symmetrical setup to detect the Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.

    Superscaling in inclusive electron-nucleus scattering

    Get PDF
    We investigate the degree to which the scaling functions F(ψ)F(\psi') derived from cross sections for inclusive electron-nucleus quasi-elastic scattering define the same function for different nuclei. In the region where the scaling variable ψ<0\psi'< 0, we find that this superscaling is experimentally realized to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9 pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to [email protected]

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A

    Experimental Metrics for Identifying Origins of Combustion Variability during Spark-Assisted Compression Ignition

    Full text link
    Spark-assisted compression ignition, SACI, can be used to control the combustion phasing of compression-ignition gasoline engines. However, implementation of this technique can be confounded by cyclic variability. The purpose of this paper is to define experimental metrics that describe the SACI process and to demonstrate the use of these metrics for identifying the source(s) of cyclic variability during the SACI process. This study focused on a light load condition (7 mg/cycle, 200 kPa i.m.e.p.), where spray-guided direct fuel injection with spark ignition and an exhaust-rebreathing strategy was employed to achieve flame propagation, which led to compression ignition. This study employed a combination of measurements including pressure-based heat-release analysis, spark-discharge voltage/current measurements, and cycle-resolved combustion imaging. Based on these measurements, four distinct combustion periods were identified; namely, the spark discharge, the early kernel growth (EKG), flame propagation, and the compression ignition periods. Metrics were defined to characterize each period and used to identify the contribution of each period to the cyclic variability of the main heat release. For the light load condition studied here, the EKG period had the largest effect on the crank angle (CA) position of 50 per cent mass burned, CA50. The spark-discharge event may affect CA50 indirectly through its influence on EKG. However, this could not be definitively assessed here since the camera was incapable of recording both the spark-discharge event and the flame images during cycles of the same tests.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86770/1/Sick18.pd

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature

    Full text link
    The properties of symmetric nuclear matter are investigated within the Green's functions approach. We have implemented an iterative procedure allowing for a self-consistent evaluation of the single-particle and two-particle propagators. The in-medium scattering equation is solved for a realistic (non-separable) nucleon-nucleon interaction including both particle-particle and hole-hole propagation. The corresponding two-particle propagator is constructed explicitely from the single-particle spectral functions. Results are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure
    corecore