1,307 research outputs found

    Updated dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Get PDF
    In the light of the new data on the various neutron and proton electromagnetic form factors taken in recent years, we update the dispersion-theoretical analysis of the nucleon electromagnetic form factors from the mid-nineties. The parametrization of the spectral functions includes constraints from unitarity, perturbative QCD, and recent measurements of the neutron charge radius. We obtain a good description of most modern form factor data, with the exception of the Jefferson Lab data on G_E^p/G_M^p in the four-momentum transfer range Q^2=3...6 GeV^2. For the magnetic radii of the proton and the neutron we find r_M^p = 0.857 fm and r_M^n = 0.879 fm, which is consistent with the recent determinations using continued fraction expansions.Comment: 5 pages, 3 ps figures, final version, exp. errors in Figs. 1 and 3 correcte

    Nuclear corrections of parton distribution functions

    Full text link
    We report global analysis results of experimental data for nuclear structure-function ratios F_2^A/F_2^{A'} and proton-nucleus Drell-Yan cross-section ratios sigma_{DY}^{pA}/sigma_{DY}^{pA'} in order to determine optimum parton distribution functions (PDFs) in nuclei. An important point of this analysis is to show uncertainties of the distributions by the Hessian method. The results indicate that the uncertainties are large for gluon distributions in the whole x region and for antiquark distributions at x>0.2. We provide a code for calculating any nuclear PDFs at given x and Q^2 for general users. They can be used for calculating high-energy nuclear reactions including neutrino-nucleus interactions, which are discussed at this workshop.Comment: 1+6 pages, LaTeX, 10 eps files, espcrc2.sty, to be published in Nucl. Phys. B Supplements, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, Italy, March 17-21, 2004. Nuclear PDF library is available at http://hs.phys.saga-u.ac.jp/nuclp.htm

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    Inclusive quasi-elastic electron-nucleus scattering

    Full text link
    This article presents a review of the field of inclusive quasi-elastic electron-nucleus scattering. It discusses the approach used to measure the data and includes a compilation of data available in numerical form. The theoretical approaches used to interpret the data are presented. A number of results obtained from the comparison between experiment and calculation are then reviewed. The analogies and differences to other fields of physics exploiting quasi-elastic scattering from composite systems are pointed out.Comment: Accepted for publication in Reviews of Modern Physic

    A high-precision polarimeter

    Full text link
    We have built a polarimeter in order to measure the electron beam polarization in hall C at JLAB. Using a superconducting solenoid to drive the pure-iron target foil into saturation, and a symmetrical setup to detect the Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.

    Probing Correlated Ground States with Microscopic Optical Model for Nucleon Scattering off Doubly-Closed-Shell Nuclei

    Full text link
    The RPA long range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e, e') and (e, e'p) measurements. Here the Random Phase Approximation (RPA) theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly-closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e. Hartree-Fock) and correlated (i.e. RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Effects of such correlations which deplete the nuclear matter at small radial distance (r << 2 fm) and enhance its surface region, are getting more and more sizeable as the incident energy increases. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16^{16}O, 40^{40}Ca, 48^{48}Ca and 208^{208}Pb target nuclei. Handling the RPA correlations systematically improves the agreement between scattering predictions and data for energies higher than 150 MeV.Comment: 20 pages, 7 figure

    Correlated Strength in Nuclear Spectral Function

    Full text link
    We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let

    A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    Get PDF
    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A
    corecore