124 research outputs found

    Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation

    Get PDF
    Controlled environment agriculture in greenhouse is a promising solution for meeting the increasing food demand of world population. The accurate control of the indoor environmental conditions proper of greenhouses enhances high crop productivity but, contemporarily, it entails considerable energy consumption due to the adoption of mechanical systems. This work presents a new modelling approach for estimating the energy consumption for climate control of mechanically ventilated greenhouses. The novelty of the proposed energy model lies in its integrated approach in simulating the greenhouse dynamics, considering the dynamic thermal and hygric behaviour of the building and the dynamic response of the cultivated crops to the variation of the solar radiation. The presented model simulates the operation of the systems and the energy performance, considering also the variable angular speed fans that are a new promising energy-efficient technology for this productive sector. The main outputs of the model are the hourly thermal and electrical energy use for climate control and the main indoor environmental conditions. The presented modelling approach was validated against a dataset acquired in a case study of a new fully mechanically controlled greenhouse during a long-term monitoring campaign. The present work contributes to increase the knowledge about the dynamics and the energy consumption of greenhouses, and it can be a valuable decision support tool for industry, farmers, and researchers to properly address an energy efficiency optimisation in mechanically ventilated greenhouses to reach the overall objective of decreasing the rising energy consumption of the agricultural sector

    Assessment of Kalman filter bias-adjustment technique to improve the simulation of ground-level ozone over Spain

    Get PDF
    The CALIOPE air quality modelling system has been used to diagnose ground level O3 concentration for the year 2004, over the Iberian Peninsula. We investigate the improvement in the simulation of daily O3 maximum by the use of a post-processing such as the Kalman filter bias-adjustment technique. The Kalman filter bias-adjustment technique is a recursive algorithm to optimally estimate bias-adjustment terms from previous measurements and model results. The bias-adjustment technique improved the simulation of daily O3 maximum for the entire year and the all the stations considered over the whole domain. The corrected simulation presents improvements in statistical indicators such as correlation, root mean square error, mean bias, and gross error. After the post-processing the exceedances of O3 concentration limits, as established by the European Directive 2008/50/CE, are better reproduced and the uncertainty of the modelling system, as established by the European Directive 2008/50/CE, is reduced from 20% to 7.5%. Such uncertainty in the model results is under the established EU limit of the 50%. Significant improvements in the O3 timing and amplitude of the daily cycle are also observed after the post-processing. The systematic improvements in the O3 maximum simulations suggest that the Kalman filter post-processing method is a suitable technique to reproduce accurate estimate of ground-level O3 concentration. With this study we evince that the adjusted O3 concentrations obtained after the post-process of the results from the CALIOPE system are a reliable means for real near time O3 forecasts

    Dynamical Localization in Quasi-Periodic Driven Systems

    Full text link
    We investigate how the time dependence of the Hamiltonian determines the occurrence of Dynamical Localization (DL) in driven quantum systems with two incommensurate frequencies. If both frequencies are associated to impulsive terms, DL is permanently destroyed. In this case, we show that the evolution is similar to a decoherent case. On the other hand, if both frequencies are associated to smooth driving functions, DL persists although on a time scale longer than in the periodic case. When the driving function consists of a series of pulses of duration σ\sigma, we show that the localization time increases as σ2\sigma^{-2} as the impulsive limit, σ0\sigma\to 0, is approached. In the intermediate case, in which only one of the frequencies is associated to an impulsive term in the Hamiltonian, a transition from a localized to a delocalized dynamics takes place at a certain critical value of the strength parameter. We provide an estimate for this critical value, based on analytical considerations. We show how, in all cases, the frequency spectrum of the dynamical response can be used to understand the global features of the motion. All results are numerically checked.Comment: 7 pages, 5 figures included. In this version is that Subsection III.B and Appendix A on the quasiperiodic Fermi Accelerator has been replaced by a reference to published wor

    Nutritional composition of a selected white food-grade waxy sorghum variety grown in Mediterranean environment

    Get PDF
    A white food-grade waxy sorghum Tw variety, grown in two Mediterranean sites (named Tw1M and Tw1S) was evaluated for nutrient composition and fatty acid- and mineral concentrations in order to determine the suitability of producing waxy sorghum for human uses in southern Italy. The nutritional values of the grains of the Tw inbred line grown in the two trial fields were substantially the same, except for slight differences in ash level and accordingly slight variation in mineral composition. In samples from both locations, a higher percentage of K was observed among the nutritionally essential macro-elements, and higher percentages of Zn, Fe, Mn, Cu, Al among the nutritionally essential micro-element along with a strong difference in Cd content was among trace elements. Across both sites linoleic, oleic and palmitic were the most abundant fatty acids, while very slight variations in the content of minerals were found among the two samples examined. These results demonstrate the importance of developing agronomically productive waxy sorghum varieties suitable for growth in non-traditional sorghum producing regions both as a food and feed crop (i.e. with good nutritional quality) and for utilization in new products at the industrial level

    Formação de professores que ensinam matemática: um olhar para o processo formativo das práticas dos licenciandos

    Get PDF
    O texto estrutura-se a partir de um recorte dos resultados de uma pesquisa realizada, enfatizando dados na perspectiva de apresentar percepções de prática dos licenciandos do curso de licenciatura em Matemática e identificar as contribuições para a formação inicial decorrentes do conjunto de disciplinas de Instrumentalização para o Ensino de Matemática. Tem por objetivo contribuir para a reflexão sobre a formação inicial do professor que ensina matemática e a importância da prática como componente curricularnos cursos de licenciatura. A metodologia da pesquisa contemplou a análise documental e a realização de entrevistas com alunos candidatos a concluir o curso de licenciatura em matemática no ano de 2014. Na análise dos resultados, observamos que a visão dos alunos enquadra-se na perspectiva de instrumentalização técnica e aponta para os exercícios desenvolvidos nas disciplinas específicas, aulas nos laboratórios didáticos e visitas às escolas como únicos espaços legítimos de relação com a prática profissional

    If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation

    Get PDF
    Spatial reciprocity is a well known tour de force of cooperation promotion. A thorough understanding of the effects of different population densities is therefore crucial. Here we study the evolution of cooperation in social dilemmas on different interaction graphs with a certain fraction of vacant nodes. We find that sparsity may favor the resolution of social dilemmas, especially if the population density is close to the percolation threshold of the underlying graph. Regardless of the type of the governing social dilemma as well as particularities of the interaction graph, we show that under pairwise imitation the percolation threshold is a universal indicator of how dense the occupancy ought to be for cooperation to be optimally promoted. We also demonstrate that myopic updating, due to the lack of efficient spread of information via imitation, renders the reported mechanism dysfunctional, which in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific Reports [related work available at http://arxiv.org/abs/1205.0541

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Evolution of Cooperation Driven by Reputation-Based Migration

    Get PDF
    How cooperation emerges and is stabilized has been a puzzling problem to biologists and sociologists since Darwin. One of the possible answers to this problem lies in the mobility patterns. These mobility patterns in previous works are either random-like or driven by payoff-related properties such as fitness, aspiration, or expectation. Here we address another force which drives us to move from place to place: reputation. To this end, we propose a reputation-based model to explore the effect of migration on cooperation in the contest of the prisoner's dilemma. In this model, individuals earn their reputation scores through previous cooperative behaviors. An individual tends to migrate to a new place if he has a neighborhood of low reputation. We show that cooperation is promoted for relatively large population density and not very large temptation to defect. A higher mobility sensitivity to reputation is always better for cooperation. A longer reputation memory favors cooperation, provided that the corresponding mobility sensitivity to reputation is strong enough. The microscopic perception of the effect of this mechanism is also given. Our results may shed some light on the role played by migration in the emergence and persistence of cooperation

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)

    Get PDF
    We present a new framework for global ocean–sea-ice model simulations based on phase 2 of the Ocean Model Intercomparison Project (OMIP-2), making use of the surface dataset based on the Japanese 55-year atmospheric reanalysis for driving ocean–sea-ice models (JRA55-do). We motivate the use of OMIP-2 over the framework for the first phase of OMIP (OMIP-1), previously referred to as the Coordinated Ocean–ice Reference Experiments (COREs), via the evaluation of OMIP-1 and OMIP-2 simulations from 11 state-of-the-science global ocean–sea-ice models. In the present evaluation, multi-model ensemble means and spreads are calculated separately for the OMIP-1 and OMIP-2 simulations and overall performance is assessed considering metrics commonly used by ocean modelers. Both OMIP-1 and OMIP-2 multi-model ensemble ranges capture observations in more than 80 % of the time and region for most metrics, with the multi-model ensemble spread greatly exceeding the difference between the means of the two datasets. Many features, including some climatologically relevant ocean circulation indices, are very similar between OMIP-1 and OMIP-2 simulations, and yet we could also identify key qualitative improvements in transitioning from OMIP-1 to OMIP-2. For example, the sea surface temperatures of the OMIP-2 simulations reproduce the observed global warming during the 1980s and 1990s, as well as the warming slowdown in the 2000s and the more recent accelerated warming, which were absent in OMIP-1, noting that the last feature is part of the design of OMIP-2 because OMIP-1 forcing stopped in 2009. A negative bias in the sea-ice concentration in summer of both hemispheres in OMIP-1 is significantly reduced in OMIP-2. The overall reproducibility of both seasonal and interannual variations in sea surface temperature and sea surface height (dynamic sea level) is improved in OMIP-2. These improvements represent a new capability of the OMIP-2 framework for evaluating process-level responses using simulation results. Regarding the sensitivity of individual models to the change in forcing, the models show well-ordered responses for the metrics that are directly forced, while they show less organized responses for those that require complex model adjustments. Many of the remaining common model biases may be attributed either to errors in representing important processes in ocean–sea-ice models, some of which are expected to be reduced by using finer horizontal and/or vertical resolutions, or to shared biases and limitations in the atmospheric forcing. In particular, further efforts are warranted to resolve remaining issues in OMIP-2 such as the warm bias in the upper layer, the mismatch between the observed and simulated variability of heat content and thermosteric sea level before 1990s, and the erroneous representation of deep and bottom water formations and circulations. We suggest that such problems can be resolved through collaboration between those developing models (including parameterizations) and forcing datasets. Overall, the present assessment justifies our recommendation that future model development and analysis studies use the OMIP-2 framework.This research has been supported by the Integrated Research Program for Advancing Climate Models (TOUGOU) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (grant nos. JPMXD0717935457 and JPMXD0717935561), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (grant no. 274762653), the Helmholtz Climate Initiative REKLIM (Regional Climate Change) and European Union's Horizon 2020 Research & Innovation program (grant nos. 727862 and 800154), the Research Council of Norway (EVA (grant no. 229771) and INES (grant no. 270061)), the US National Science Foundation (NSF) (grant no. 1852977), the National Natural Science Foundation of China (grant nos. 41931183 and 41976026), NOAA's Science Collaboration Program and administered by UCAR's Cooperative Programs for the Advancement of Earth System Science (CPAESS) (grant nos. NA16NWS4620043 and NA18NWS4620043B), and NOAA (grant no. NA18OAR4320123).Peer ReviewedPostprint (published version
    corecore