12 research outputs found

    Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    Get PDF
    The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro)

    Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment

    Get PDF
    Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas

    A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells

    Get PDF
    Background: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. Methods: We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. Results: The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. Conclusion: Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro

    Characterization of Adherent Umbilical Cord Blood Stromal Cells Regarding Passage, Cell Number, and Nano-biomarking Utilization

    No full text
    Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.Instituto de Ensino e Pesquisa Albert EinsteinFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation

    No full text
    Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs' protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.Instituto de Ensino e Pesquisa Albert EinsteinSociedade Beneficente Israelita Hospital Albert Einstein (SBIBHAE)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP
    corecore