174 research outputs found

    Dynamics of horizontal-like maps in higher dimension

    Get PDF
    We study the regularity of the Green currents and of the equilibrium measure associated to a horizontal-like map in C^k, under a natural assumption on the dynamical degrees. We estimate the speed of convergence towards the Green currents, the decay of correlations for the equilibrium measure and the Lyapounov exponents. We show in particular that the equilibrium measure is hyperbolic. We also show that the Green currents are the unique invariant vertical and horizontal positive closed currents. The results apply, in particular, to Henon-like maps, to regular polynomial automorphisms of C^k and to their small pertubations.Comment: Dedicated to Professor Gennadi Henkin on the occasion of his 65th birthday, 37 pages, to appear in Advances in Mat

    Strong Stein neighborhood bases

    Full text link
    Let D be a smooth bounded pseudoconvex domain in C^n. We give several characterizations for the closure of D to have a strong Stein neighborhood basis in the sense that D has a defining function r such that {z\in C^n:r(z)<a} is pseudoconvex for sufficiently small a>0. We also show that this condition is invariant under proper holomorphic maps that extend smoothly to the boundary.Comment: 14 pages, fixed same references, to appear in Complex Var. Elliptic Eq

    Some open problems in higher dimensional complex analysis and complex dynamics

    Full text link

    Algebras generated by two bounded holomorphic functions

    Full text link
    We study the closure in the Hardy space or the disk algebra of algebras generated by two bounded functions, of which one is a finite Blaschke product. We give necessary and sufficient conditions for density or finite codimension of such algebras. The conditions are expressed in terms of the inner part of a function which is explicitly derived from each pair of generators. Our results are based on identifying z-invariant subspaces included in the closure of the algebra. Versions of these results for the case of the disk algebra are given.Comment: 22 pages ; a number of minor mistakes have been corrected, and some points clarified. Conditionally accepted by Journal d'Analyse Mathematiqu

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure

    Hyperholomorpic connections on coherent sheaves and stability

    Full text link
    Let MM be a hyperkaehler manifold, and FF a torsion-free and reflexive coherent sheaf on MM. Assume that FF (outside of its singularities) admits a connection with a curvature which is invariant under the standard SU(2)-action on 2-forms. If the curvature is square-integrable, then FF is stable and its singularities are hyperkaehler subvarieties in MM. Such sheaves (called hyperholomorphic sheaves) are well understood. In the present paper, we study sheaves admitting a connection with SU(2)-invariant curvature which is not necessarily square-integrable. This situation arises often, for instance, when one deals with higher direct images of holomorphic bundles. We show that such sheaves are stable.Comment: 37 pages, version 11, reference updated, corrected many minor errors and typos found by the refere
    corecore