154 research outputs found

    Uptake of Dimethylsulfoniopropionate (DMSP) by Natural Microbial Communities of the Great Barrier Reef (GBR), Australia.

    Full text link
    Dimethylsulfoniopropionate (DMSP) is a key organic sulfur compound that is produced by many phytoplankton and macrophytes and is ubiquitous in marine environments. Following its release into the water column, DMSP is primarily metabolised by heterotrophic bacterioplankton, but recent evidence indicates that non-DMSP producing phytoplankton can also assimilate DMSP from the surrounding environment. In this study, we examined the uptake of DMSP by communities of bacteria and phytoplankton within the waters of the Great Barrier Reef (GBR), Australia. We incubated natural GBR seawater with DMSP and quantified the uptake of DMSP by different fractions of the microbial community (>8 µm, 3-8 µm, 8 µm) forming the dominant sink, increasing in particulate DMSP by 44-115% upon DMSP enrichment. Longer-term incubations showed however, that DMSP retention was short lived (<24 h) and microbial responses to DMSP enrichment differed depending on the community carbon and sulfur demand. The response of the microbial communities from inside the reef indicated a preference towards cleaving DMSP into the climatically active aerosol dimethyl sulfide (DMS), whereas communities from the outer reef were sulfur and carbon limited, resulting in more DMSP being utilised by the cells. Our results show that DMSP uptake is shared across members of the microbial community, highlighting larger phytoplankton taxa as potentially relevant DMSP reservoirs and provide new information on sulfur cycling as a function of community metabolism in deeper, oligotrophic GBR waters

    Application of ZnO-Fe3O4 nanocomposite on the removal of azo dye from aqueous solutions: Kinetics and equilibrium studies

    Get PDF
    In this study, zinc oxide was immobilized on magnetite nanoparticles by chemical method and it was used as an adsorbent to remove reactive black 5 (RB5) dye from aqueous solution. The removal efficiency of RB5 was studied as the function of adsorbent dosage, pH, initial RB5 concentration, H2O 2, and ionic strength (sodium carbonate, sodium bicarbonate, sodium sulfate, and sodium chloride). Removal efficiency of RB5 by ZnO-Fe 3O4 was greater than that by ZnO and Fe3O 4 in similar conditions. Maximum adsorption of ZnO-Fe 3O4 was obtained at neutral pH, and adsorption capacity was estimated to be 22.1 mg/g. Adsorption kinetic study revealed that the pseudo-second-order model better described the removal rate than the pseudo-first-order model. Adsorption isotherm was analyzed by both Langmuir and Freundlich equations, and results showed that it was better described by the Langmuir equation. The removal efficiency of RB5 was increased with increasing initial H2O2 concentrations from 2 to 5 mM but was decreased above 5 mM. The adsorption capacities of RB5 was increased in the presence of NaCl but was greatly decreased in the presence of bicarbonate, carbonate, and sulfate ion. Adsorption activity of RB5 by ZnO-Fe 3O4 composite was maintained even after five successive cycles, suggesting a promising adsorbent for wastewater-contaminated organic dyes. © Springer International Publishing Switzerland 2014

    Occurrence and dynamics of potentially pathogenic vibrios in the wet-dry tropics of northern Australia

    Full text link
    Bacteria from the Vibrio genus are a ubiquitous component of coastal and estuarine ecosystems with several pathogenic Vibrio species displaying preferences for warm tropical waters. We studied the spatial and temporal abundance of three key human potential pathogens V. parahaemolyticus, V. cholerae and V. vulnificus in northern tropical Australia, over the wet and dry seasons, to identify environmental parameters influencing their abundance. Quantitative PCR (qPCR) analysis revealed that V. parahaemolyticus occurred more frequently and in higher abundance than V. cholerae and V. vulnificus across all locations examined. All three species were more abundant during the wet season, with V. parahaemolyticus abundance correlated to temperature and conductivity, whereas nutrient concentrations and turbidity best explained V. vulnificus abundance. In addition to these targeted qPCR analyses, we assessed the composition and dynamics of the entire Vibrio community using hsp60 amplicon sequencing. Using this approach, 42 Vibrio species were identified, including a number of other pathogenic species such as V. alginolyticus, V. mimicus and V. fluvialis. The Vibrio community was more diverse in the wet season, with temperature and dissolved oxygen as the key factors governing community composition. Seasonal differences were primarily driven by a greater abundance of V. parahaemolyticus and V. vulnificus during the wet season, while spatial differences were driven by different abundances of V. harveyi, V. campbellii, V. cholerae and V. navarrensis. When we related the abundance of Vibrio to other bacterial taxa, defined using 16S rRNA gene amplicon sequencing, V. parahaemolyticus was negatively correlated to several taxa, including members of the Rickettsiales and Saccharimonadales, while V. vulnificus was negatively correlated to Rhobacteriaceae and Cyanobiaceae. In contrast, V. alginolyticus, V. harveyi and V. mediterranei were all positively correlated to Cyanobacteria. These observations highlight the dynamic nature of Vibrio communities and expands current understanding of the processes governing the occurrence of potentially pathogenic Vibrio spp. in tropical coastal ecosystems

    Pearl Oyster Bacterial Community Structure Is Governed by Location and Tissue-Type, but Vibrio Species Are Shared Among Oyster Tissues.

    Full text link
    Diseases of bivalves of aquacultural importance, including the valuable Australian silver-lipped pearl oyster (Pinctada maxima), have been increasing in frequency and severity. The bivalve microbiome is linked to health and disease dynamics, particularly in oysters, with putative pathogens within the Vibrio genus commonly implicated in oyster diseases. Previous studies have been biased toward the Pacific oyster because of its global dominance in oyster aquaculture, while much less is known about the microbiome of P. maxima. We sought to address this knowledge gap by characterizing the P. maxima bacterial community, and we hypothesized that bacterial community composition, and specifically the occurrence of Vibrio, will vary according to the sampled microenvironment. We also predicted that the inside shell swab bacterial composition could represent a source of microbial spillover biofilm into the solid pearl oyster tissues, thus providing a useful predictive sampling environment. We found that there was significant heterogeneity in bacterial composition between different pearl oyster tissues, which is consistent with patterns reported in other bivalve species and supports the hypothesis that each tissue type represents a unique microenvironment for bacterial colonization. We suggest that, based on the strong effect of tissue-type on the pearl oyster bacterial community, future studies should apply caution when attempting to compare microbial patterns from different locations, and when searching for disease agents. The lack of association with water at each farm also supported the unique nature of the microbial communities in oyster tissues. In contrast to the whole bacterial community, there was no significant difference in the Vibrio community among tissue types nor location. These results suggest that Vibrio species are shared among different pearl oyster tissues. In particular, the similarity between the haemolymph, inside shell and solid tissues, suggests that the haemolymph and inside shell environment is a source of microbial spillover into the oyster tissues, and a potentially useful tool for non-destructive routine disease testing and early warning surveillance. These data provide important foundational information for future studies identifying the factors that drive microbial assembly in a valuable aquaculture species

    Deep learning framework for uncovering compositional and environmental contributions to pitting resistance in passivating alloys

    Get PDF
    We have developed a deep-learning-based framework for understanding the individual and mutually combined contributions of different alloying elements and environmental conditions towards the pitting resistance of corrosion-resistant alloys. A fully connected deep neural network (DNN) was trained on previously published datasets on corrosion-relevant electrochemical metrics, to predict the pitting potential of an alloy, given the chemical composition and environmental conditions. Mean absolute error of 170 mV in the predicted pitting potential, with an R-square coefficient of 0.61 was obtained after training. The trained DNN model was used for multi-dimensional gradient descent optimization to search for conditions maximizing the pitting potential. Among environmental variables, chloride-ion concentration was universally found to be detrimental. Increasing the amounts of dissolved nitrogen/carbon was found to have the strongest beneficial influence in many alloys. Supersaturating transition metal high entropy alloys with large amounts of interstitial nitrogen/carbon has emerged as a possible direction for corrosion-resistant alloy design

    Photocatalytic degradation of Metronidazole with illuminated TiO<inf>2</inf> nanoparticles

    Get PDF
    Metronidazole (MNZ) is a brand of nitroimidazole antibiotic, which is generally used in clinical applications and extensively used for the treatment of infectious diseases caused by anaerobic bacteria and protozoans. The aim of this investigation was to degrade MNZ with illuminated TiO2 nanoparticles at different catalyst dosage, contact time, pH, initial MNZ concentration and lamp intensity. Maximum removal of MNZ was observed at near neutral pH. Removal efficiency was decreased by increasing dosage and initial MNZ concentration. The reaction rate constant (kobs) was decreased from 0.0513 to 0.0072 min−1 and the value of electrical energy per order (EEo) was increased from 93.57 to 666.67 (kWh/m3 ) with increasing initial MNZ concentration from 40 to 120 mg/L, respectively. The biodegradability estimated from the BOD5/COD ratio was increased from 0 to 0.098. The photocatalyst demonstrated proper photocatalytic activity even after five successive cycles. Finally, UV/TiO2 is identified as a promising technique for the removal of antibiotic with high efficiency in a relatively short reaction time

    Nonmonotonic Classical Magnetoconductivity of a Two-Dimensional Electron Gas in a Disordered Array of Obstacles

    Full text link
    Magnetotransport measurements in combination with molecular dynamics (MD) simulations on two-dimensional disordered Lorentz gases in the classical regime are reported. In quantitative agreement between experiment and simulation, the magnetoconductivity displays a pronounced peak as a function of perpendicular magnetic field BB which cannot be explained in the framework of existing kinetic theories. We show that this peak is linked to the onset of a directed motion of the electrons along the contour of the disordered obstacle matrix when the cyclotron radius becomes smaller than the size of the obstacles. This directed motion leads to transient superdiffusive motion and strong scaling corrections in the vicinity of the insulator-to-conductor transitions of the Lorentz gas.Comment: 5 pages, 4 figure

    Quantitative methods to monitor RNA biomarkers in myotonic dystrophy

    Get PDF
    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in afected genes. The abnormal expansion of CTG repeats in the 3′-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplifcation and droplet digital PCR, for studying the mutant DMPK transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fuorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPKexpRNA
    corecore