37 research outputs found

    Buoyancy studies in natural communities of square gas-vacuolate archaea in saltern crystallizer ponds

    Get PDF
    BACKGROUND: Possession of gas vesicles is generally considered to be advantageous to halophilic archaea: the vesicles are assumed to enable the cells to float, and thus reach high oxygen concentrations at the surface of the brine. RESULTS: We studied the possible ecological advantage of gas vesicles in a dense community of flat square extremely halophilic archaea in the saltern crystallizer ponds of Eilat, Israel. We found that in this environment, the cells' content of gas vesicles was insufficient to provide positive buoyancy. Instead, sinking/floating velocities were too low to permit vertical redistribution. CONCLUSION: The hypothesis that the gas vesicles enable the square archaea to float to the surface of the brines in which they live was not supported by experimental evidence. Presence of the vesicles, which are mainly located close to the cell periphery, may provide an advantage as they may aid the cells to position themselves parallel to the surface, thereby increasing the efficiency of light harvesting by the retinal pigments in the membrane

    Elevated estuary water temperature drives fish gut dysbiosis and increased loads of pathogenic vibrionaceae

    Get PDF
    Marine water temperatures are increasing globally, with eastern Australian estuaries warming faster than predicted. There is growing evidence that this rapid warming of coastal waters is increasing the abundance and virulence of pathogenic members of the Vibrionaceae, posing a significant health risk to both humans and aquatic organisms. Fish disease, notably outbreaks of emerging pathogens in response to environmental perturbations such as heatwaves, have been recognised in aquaculture settings. Considerably less is known about how rising sea surface temperatures will impact the microbiology of wild fish populations, particularly those within estuarine systems that are more vulnerable to warming. We used a combination of Vibrio-specific quantitative PCR and amplicon sequencing of the 16S rRNA and hsp60 genes to examine seawater and fish (Pelates sexlineatus) gut microbial communities across a quasi-natural experimental system, where thermal pollution from coal-fired power stations creates a temperature gradient of up to 6 °C, compatible with future predicted temperature increases. At the warmest site, fish hindgut microbial communities were in a state of dysbiosis characterised by shifts in beta diversity and a proliferation (71.5% relative abundance) of the potential fish pathogen Photobacterium damselae subsp. damselae. Comparable patterns were not identified in the surrounding seawater, indicating opportunistic proliferation within estuarine fish guts under thermal stress. A subsequent evaluation of predicted future warming-related risk due to pathogenic Vibrionaceae in temperate estuarine fish demonstrated that warming is likely to drive opportunistic pathogen increases in the upper latitudinal range of this estuarine fish, potentially impacting adaptations to future warming. These findings represent a breakthrough in our understanding of the dynamics of emerging pathogens in populations of wild aquatic organisms within environments likely to experience rapid warming under future climate change

    Identification and quantification of <i>Acanthamoeba</i> spp. within seawater at four coastal lagoons on the east coast of Australia

    Get PDF
    Acanthamoeba is an opportunistic free-living heterotrophic protist that is the most predominant amoeba in diverse ecological habitats. Acanthamoeba causes amoebic keratitis (AK), a painful and potentially blinding corneal infection. Major risk factors for AK have been linked to non-optimal contact lens hygiene practices and Acanthamoeba contamination of domestic and recreational water. This study investigated the incidence and seasonal variation of Acanthamoeba spp. within coastal lagoons located on the eastern coast of Australia and then examined the association between Acanthamoeba and water abiotic factors and bacterial species within the water.Water samples were collected from four intermittently closed and open lagoons (ICOLLs) (Wamberal, Terrigal, Avoca and Cockrone) every month between August 2019 to July 2020 except March and April. qPCR was used to target the Acanthamoeba 18S rRNA gene, validated by Sanger sequencing. Water abiotic factors were measured in situ using a multiprobe metre and 16S rRNA sequencing (V3-V4) was performed to characterise bacterial community composition. Network analysis was used to gauge putative associations between Acanthamoeba incidence and bacterial amplicon sequence variants (ASVs).Among 206 water samples analysed, 79 (38.3%) were Acanthamoeba positive and Acanthamoeba level was significantly higher in summer compared with winter, spring, or autumn (p = 0.008). More than 50% (23/45) water samples of Terrigal were positive for Acanthamoeba which is a highly urbanised area with extensive recreational activities while about 32% (16/49) samples were positive from Cockrone that is the least impacted lagoon by urban development. All sequenced strains belonged to the pathogenic genotype T4 clade except two which were of genotype clades T2 and T5. Water turbidity, temperature, intl1 gene concentration, and dissolved O2 were significantly associated with Acanthamoeba incidence (p &lt; 0.05). The ASVs level of cyanobacteria, Pseudomonas spp., Candidatus spp., and marine bacteria of the Actinobacteria phylum and Acanthamoeba 18S rRNA genes were positively correlated (Pearson's r ≥ 0.14). The presence of Acanthamoeba spp. in all lagoons, except Wamberal, was associated with significant differences in the composition of bacterial communities (beta diversity).The results of this study suggest that coastal lagoons, particularly those in urbanised regions with extensive water recreational activities, may pose an elevated risk to human health due to the relatively high incidence of pathogenic Acanthamoeba in the summer. These findings underscore the importance of educating the public about the rare yet devastating impact of AK on vision and quality of life, highlighting the need for collaborative efforts between public health officials and educators to promote awareness and preventive measures, especially focusing lagoons residents and travellers

    The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in O’Brien, J., McParland, E. L., Bramucci, A. R., Ostrowski, M., Siboni, N., Ingleton, T., Brown, M. V., Levine, N. M., Laverock, B., Petrou, K., & Seymour, J. The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters. Frontiers in Microbiology, 13, (2022): 894026, https://doi.org/10.3389/fmicb.2022.894026.The organic sulfur compounds dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) play major roles in the marine microbial food web and have substantial climatic importance as sources and sinks of dimethyl sulfide (DMS). Seasonal shifts in the abundance and diversity of the phytoplankton and bacteria that cycle DMSP are likely to impact marine DMS (O) (P) concentrations, but the dynamic nature of these microbial interactions is still poorly resolved. Here, we examined the relationships between microbial community dynamics with DMS (O) (P) concentrations during a 2-year oceanographic time series conducted on the east Australian coast. Heterogenous temporal patterns were apparent in chlorophyll a (chl a) and DMSP concentrations, but the relationship between these parameters varied over time, suggesting the phytoplankton and bacterial community composition were affecting the net DMSP concentrations through differential DMSP production and degradation. Significant increases in DMSP were regularly measured in spring blooms dominated by predicted high DMSP-producing lineages of phytoplankton (Heterocapsa, Prorocentrum, Alexandrium, and Micromonas), while spring blooms that were dominated by predicted low DMSP-producing phytoplankton (Thalassiosira) demonstrated negligible increases in DMSP concentrations. During elevated DMSP concentrations, a significant increase in the relative abundance of the key copiotrophic bacterial lineage Rhodobacterales was accompanied by a three-fold increase in the gene, encoding the first step of DMSP demethylation (dmdA). Significant temporal shifts in DMS concentrations were measured and were significantly correlated with both fractions (0.2–2 μm and >2 μm) of microbial DMSP lyase activity. Seasonal increases of the bacterial DMSP biosynthesis gene (dsyB) and the bacterial DMS oxidation gene (tmm) occurred during the spring-summer and coincided with peaks in DMSP and DMSO concentration, respectively. These findings, along with significant positive relationships between dsyB gene abundance and DMSP, and tmm gene abundance with DMSO, reinforce the significant role planktonic bacteria play in producing DMSP and DMSO in ocean surface waters. Our results highlight the highly dynamic nature and myriad of microbial interactions that govern sulfur cycling in coastal shelf waters and further underpin the importance of microbial ecology in mediating important marine biogeochemical processes.This research was supported by the Australian Research Council Grants FT130100218 and DP180100838 awarded to JS and DP140101045 awarded to JS and KP, as well as an Australian Government Research Training Program Scholarship awarded to JO’B

    Variability in the Composition of Pacific Oyster Microbiomes Across Oyster Families Exhibiting Different Levels of Susceptibility to OsHV-1 μvar Disease

    Get PDF
    Oyster diseases are a major impediment to the profitability and growth of the oyster aquaculture industry. In recent years, geographically widespread outbreaks of disease caused by ostreid herpesvirus-1 microvariant (OsHV-1 μvar) have led to mass mortalities among Crassostrea gigas, the Pacific Oyster. Attempts to minimize the impact of this disease have been largely focused on breeding programs, and although these have shown some success in producing oyster families with reduced mortality, the mechanism(s) behind this protection is poorly understood. One possible factor is modification of the C. gigas microbiome. To explore how breeding for resistance to OsHV-1 μvar affects the oyster microbiome, we used 16S rRNA amplicon sequencing to characterize the bacterial communities associated with 35 C. gigas families, incorporating oysters with different levels of susceptibility to OsHV-1 μvar disease. The microbiomes of disease-susceptible families were significantly different to the microbiomes of disease-resistant families. OTUs assigned to the Photobacterium, Vibrio, Aliivibrio, Streptococcus, and Roseovarius genera were associated with low disease resistance. In partial support of this finding, qPCR identified a statistically significant increase of Vibrio-specific 16S rRNA gene copies in the low disease resistance families, possibly indicative of a reduced host immune response to these pathogens. In addition to these results, examination of the core microbiome revealed that each family possessed a small core community, with OTUs assigned to the Winogradskyella genus and the Bradyrhizobiaceae family consistent members across most disease-resistant families. This study examines patterns in the microbiome of oyster families exhibiting differing levels of OsHV-1 μvar disease resistance and reveals some key bacterial taxa that may provide a protective or detrimental role in OsHV-1 μvar disease outbreaks

    Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton

    Get PDF
    Abstract Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean’s major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound

    A new high throughput sequencing assay for characterising the diversity of natural Vibrio communities and its application to a Pacific oyster mortality event - data analysis workflow

    No full text
    A new high throughput sequencing approach targeting the heat shock protein (hsp60) as a phylogenetic marker was developed to more precisely discriminate members of the Vibrio genus in environmental samples. There is a need for an accurate high throughput assay for defining Vibrio community composition in natural samples and this Vibrio-centric hsp60 sequencing assay offers the potential for precise high throughput characterisation of Vibrio diversity, providing an enhanced platform for dissecting Vibrio dynamics in the environment. Associated publication DOI: 10.3389/fmicb.2019.0290

    Acclimation in intertidal animals reduces potential pathogen load and increases survival following a heatwave

    No full text
    Summary: Intertidal animals can experience intense heat during a heatwave, leading to mortality. The causes of death for intertidal animals following heatwaves have often been attributed to a breakdown in physiological processes. This, however, contrasts with research in other animals where heatwave mortality is attributed to existing or opportunistic diseases. We acclimated intertidal oysters to four treatment levels, including an antibiotic treatment, and then exposed all treatments to a 50°C heatwave for 2 h, replicating what can be experienced on Australian shorelines. We found that both acclimation and antibiotics increased survival and reduced the presence of potential pathogens. Non-acclimated oysters had a significant shift in their microbiome, with increasing abundances of bacteria from the Vibrio genera, including known potential pathogens. Our results demonstrate that bacterial infection plays a pivotal role in post-heatwave mortality. We anticipate these findings to inform the management of aquaculture and intertidal habitats as climate change intensifies

    Advantage of Using Inosine at the 3′ Termini of 16S rRNA Gene Universal Primers for the Study of Microbial Diversity

    No full text
    To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3′ termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54°C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50°C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3′ termini in studying the microbial diversity of environmental samples
    corecore