67 research outputs found

    Long-term ocean and resource dynamics in a hotspot of climate change

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThe abundance, distribution, and size of marine species are linked to temperature and nutrient regimes and are profoundly affected by humans through exploitation and climate change. Yet little is known about long-term historical links between ocean environmental changes and resource abundance to provide context for current and potential future trends and inform conservation and management. We synthesize >4000 years of climate and marine ecosystem dynamics in a Northwest Atlantic region currently undergoing rapid changes, the Gulf of Maine and Scotian Shelf. This period spans the late Holocene cooling and recent warming and includes both Indigenous and European influence. We compare environmental records from instrumental, sedimentary, coral, and mollusk archives with ecological records from fossils, archaeological, historical, and modern data, and integrate future model projections of environmental and ecosystem changes. This multidisciplinary synthesis provides insight into multiple reference points and shifting baselines of environmental and ecosystem conditions, and projects a near-future departure from natural climate variability in 2028 for the Scotian Shelf and 2034 for the Gulf of Maine. Our work helps advancing integrative end-to-end modeling to improve the predictive capacity of ecosystem forecasts with climate change. Our results can be used to adjust marine conservation strategies and network planning and adapt ecosystem-based management with climate change

    Ichthyolith (tooth and denticle) counts from DSDP 386, 596, ODP 886, 1262, IODP U1403, and Gubbio K/Pg boundary sections

    No full text
    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: While shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure was initiated at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes.

    New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction

    No full text
    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes.
    • …
    corecore