154 research outputs found
Chromosome 17q12 duplications: Further delineation of the range of psychiatric and clinical phenotypes
Copy number variants at chromosome 17q12 have been associated with a spectrum of phenotypes. Deletions of 17q12 are well described and associated with maturity onset diabetes of the young type 5 (MODY5) and cystic renal disease (HNF1β) as well as cognitive impairment and seizures. Duplication of 17q12 is emerging as a new genetic syndrome, associated with learning disability, seizures, and behavioral problems. The duplication is often inherited from an apparently unaffected parent. Here, we describe a three‐generation family with multiple individuals carrying a17q12 microduplication with varying clinical features, consistent with variable penetrance. The proband who inherited a 1.8 Mb interstitial 17q12 duplication from his mother presented with developmental delay, behavioral problems, and mild dysmorphism. One of his sisters, his maternal uncle, and his maternal grandmother also carry the 17q12 microduplication. Clinical features of the carriers include renal problems, diabetes mellitus, learning difficulties, epilepsy and mental illness. Cognitive abilities range from normal function to moderate impairment (full‐scale IQ range: 52‐99). In light of recent reports of association of this locus with schizophrenia, we performed a detailed psychiatric assessment and confirmed that one family member has symptoms consistent with a diagnosis of schizophrenia and another has a prodromal syndrome with attenuated positive symptoms of psychosis. This report extends the clinical phenotype associated with the 17q12 microduplication and highlights the phenotypic variability
Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes During Heart Failure in Rodents and Humans.
Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemic heart failure pointing to an autoimmune response against the heart. T and B cells have been convincingly demonstrated to be activated after myocardial infarction, a prerequisite for the generation of mature auto-antibodies. Yet, little is known about the immunoglobulin isotype repertoire thus pathological potential of anti-heart auto-antibodies during heart failure. We obtained human myocardial tissue from ischemic heart failure patients and induced experimental MI in rats. We found that anti-heart autoimmunity persists during heart failure. Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with mature isotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens are present in rat heart failure serum, and IgG and complement C3 deposits are evident in heart failure tissue of both rats and human patients. Previously established myocardial inflammation, and the herein provided proof of B cell maturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide all the hallmark signs of an established autoimmune response in chronic heart failure
Estimating the sensitivity of a prostate cancer screening programme for different PSA cut-off levels:A UK case study
Policy decisions about prostate cancer screening require data on the natural history of histological cancers and the resulting impact of screening. However, the gold standard procedure required to identify true positive histological cancer is a full autopsy of the gland which is not possible in screening studies, leading to verification bias. We aim to estimate the sensitivity of a prostate cancer screening round (PSA result to diagnosis) relative to histological cancer.We developed a framework combining data on UK screened and non-screened prostate cancer populations originating from a single round of population-based PSA testing among UK men aged 50-69 years, prostate cancer incidence data, and needle biopsy data from the published literature.Sensitivity of a screening round was highest at age 65-69 years at 33% (95% CI: 30%-37%) and 24% (95% CI: 21%-28%) for PSA cut-off levels of 3 ng/ml and 4 ng/ml, respectively. Sensitivity was lowest at age 50-54 at 15% (95% CI: 12%-17%) and 9% (95% CI: 8%-11%) for PSA cut-off levels of 3 ng/ml and 4 ng/ml, respectively. In contrast, the clinical detection rate in the absence of mass screening, relative to histological cancer, varied between 0.2%-0.7% at age 50-54 and 1.2%-2.7% at age 65-69 from 1995 to 2012.The framework enabled the sensitivity of a prostate cancer screening round relative to histological cancer diagnosis to be estimated and provides a basis to determine the impact and cost-effectiveness of prostate cancer screening. The approach could be adapted to inform the sensitivity of other biomarkers, cancers and screening programmes
FlyBase at 25: looking to the future.
Since 1992, FlyBase (flybase.org) has been an essential online resource for the Drosophila research community. Concentrating on the most extensively studied species, Drosophila melanogaster, FlyBase includes information on genes (molecular and genetic), transgenic constructs, phenotypes, genetic and physical interactions, and reagents such as stocks and cDNAs. Access to data is provided through a number of tools, reports, and bulk-data downloads. Looking to the future, FlyBase is expanding its focus to serve a broader scientific community. In this update, we describe new features, datasets, reagent collections, and data presentations that address this goal, including enhanced orthology data, Human Disease Model Reports, protein domain search and visualization, concise gene summaries, a portal for external resources, video tutorials and the FlyBase Community Advisory Group
Prospective functional classification of all possible missense variants in PPARG.
Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (1K08DK102877-01, to A.R.M.; 1R01DK097768-01, to D.A.), NIH/Harvard Catalyst (1KL2TR001100-01, to A.R.M.), the Broad Institute (SPARC award, to A.R.M. and T.M.), and the Wellcome Trust (095564, to K.C.; 107064, to D.B.S.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.370
Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy
Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults
Alliance of Genome Resources Portal: unified model organism research platform
The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
Alliance of Genome Resources Portal: unified model organism research platform
The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
Real-world data using mHealth apps in rhinitis, rhinosinusitis and their multimorbidities
Digital health is an umbrella term which encompasses eHealth and benefits from areas such as advanced computer sciences. eHealth includes mHealth apps, which offer the potential to redesign aspects of healthcare delivery. The capacity of apps to collect large amounts of longitudinal, real-time, real-world data enables the progression of biomedical knowledge. Apps for rhinitis and rhinosinusitis were searched for in the Google Play and Apple App stores, via an automatic market research tool recently developed using JavaScript. Over 1500 apps for allergic rhinitis and rhinosinusitis were identified, some dealing with multimorbidity. However, only six apps for rhinitis (AirRater, AllergyMonitor, AllerSearch, Husteblume, MASK-air and Pollen App) and one for rhinosinusitis (Galenus Health) have so far published results in the scientific literature. These apps were reviewed for their validation, discovery of novel allergy phenotypes, optimisation of identifying the pollen season, novel approaches in diagnosis and management (pharmacotherapy and allergen immunotherapy) as well as adherence to treatment. Published evidence demonstrates the potential of mobile health apps to advance in the characterisation, diagnosis and management of rhinitis and rhinosinusitis patients.Peer reviewe
- …