2,142 research outputs found

    Increased rod stiffness improves the degree of deformity correction by segmental pedicle screw fixation in adolescent idiopathic scoliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are limited reports in literature studying the impact of rod diameter and stiffness on the degree of deformity correction in patients with AIS.</p> <p>Aims</p> <p>The aims of this study were to evaluate the 3-dimentional deformity correction achieved by segmental pedicle screw fixation in patients with adolescent idiopathic scoliosis, and to find out if learning or the change to stiffer rods had any positive impact on deformity correction.</p> <p>Study design</p> <p>Retrospective study.</p> <p>Methods</p> <p>Plain radiographs and low-dose spine CTs of 116 consecutive patients (aged 15.9 ± 2.8 years) operated during the period 2005-2009 (group 1: patients operated autumn 2005-2006; group 2: 2007; group 3: 2008; group 4: 2009) were retrospectively evaluated.</p> <p>Results</p> <p>There was no statistically significant difference between the correction of the Cobb angle (P = 0.425) or lower end vertebra tilt (P = 0.298) in patients operated during the first versus the remaining periods of the study. No restoration of the sagittal kyphosis was reported in the first period compared with 5.9° in the last study period (P < 0.001). The correction of vertebral rotation was also improved from 4.2° to 7.8° (P < 0.001) for the same periods. For the whole study population, there was statistically significant correlation between the order of the operation (patient number) and the restoration of sagittal kyphosis (r = -0.344, P = 0.001), and the correction of vertebral rotation (r = 0.370, P < 0.001), but not for the Cobb angle or LEVT. However, there was no significant difference in restoration of sagittal kyphosis and the vertebral rotation in the first 17 patients compared with the last 17 patients operated with rods of 5.5 mm diameter (P = 0.621, and 0.941, respectively), indicating that rod stiffness had more impact on the deformity correction than did learning.</p> <p>Conclusions</p> <p>This study showed that rod stiffness had more impact on the deformity correction than did learning.</p

    Segmental correction of adolescent idiopathic scoliosis by all-screw fixation method in adolescents and young adults. minimum 5 years follow-up with SF-36 questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our institution, the fixation technique in treating idiopathic scoliosis was shifted from hybrid fixation to the all-screw method beginning in 2000. We conducted this study to assess the intermediate -term outcome of all-screw method in treating adolescent idiopathic scoliosis (AIS).</p> <p>Methods</p> <p>Forty-nine consecutive patients were retrospectively included with minimum of 5-year follow-up (mean, 6.1; range, 5.1-7.3 years). The average age of surgery was 18.5 ± 5.0 years. We assessed radiographic measurements at preoperative (Preop), postoperative (PO) and final follow-up (FFU) period. Curve correction rate, correction loss rate, complications, accuracy of pedicle screws and SF-36 scores were analyzed.</p> <p>Results</p> <p>The average major curve was corrected from 58.0 ± 13.0° Preop to 16.0 ± 9.0° PO(<it>p </it>< 0.0001), and increased to 18.4 ± 8.6°(<it>p </it>= 0.12) FFU. This revealed a 72.7% correction rate and a correction loss of 2.4° (3.92%). The thoracic kyphosis decreased little at FFU (22 ± 12° to 20 ± 6°, (<it>p </it>= 0.25)). Apical vertebral rotation decreased from 2.1 ± 0.8 PreOP to 0.8 ± 0.8 at FFU (Nash-Moe grading, <it>p </it>< 0.01). Among total 831 pedicle screws, 56 (6.7%) were found to be malpositioned. Compared with 2069 age-matched Taiwanese, SF-36 scores showed inferior result in 2 variables: physical function and role physical.</p> <p>Conclusion</p> <p>Follow-up more than 5 years, the authors suggest that all-screw method is an efficient and safe method.</p

    Graphene-protected copper and silver plasmonics.

    Get PDF
    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics.SAIT GRO Program and EPSRC grant EP/K011022/1. Y.-J. Kim was supported by the Global Research Laboratory Program (2011-0021972) of the Ministry of Education, Science and Technology, Korea. The support of the Graphene Flagship project is acknowledged

    Sculpting oscillators with light within a nonlinear quantum fluid

    Full text link
    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic

    Clinical and radiographic outcomes of the treatment of adolescent idiopathic scoliosis with segmental pedicle screws and combined local autograft and allograft bone for spinal fusion: a retrospective case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High morbidity has been reported with iliac crest bone graft harvesting; however, donor bone is typically necessary for posterior spinal fusion. Autograft bone combined with allograft may reduce the morbidity associated with iliac crest bone harvesting and improve the fusion rate. Our aim in this study was to determine the presence of complications, pseudarthrosis, non-union, and infection using combined <it>in situ </it>local autograft bone and freeze-dried cancellous allograft bone in patients undergoing posterior spinal fusion for the treatment of adolescent idiopathic scoliosis.</p> <p>Methods</p> <p>A combination of <it>in situ </it>local autograft bone and freeze-dried cancellous allograft blocks were used in 50 consecutive patients with adolescent idiopathic scoliosis treated by posterior fusion and Moss Miami pedicle screw instrumentation. Results were assessed clinically and radiographically and quality of life and functional outcome was evaluated by administration of a Chinese version of the SRS-22 survey.</p> <p>Results</p> <p>There were 41 female and 9 male patients included for analysis with an average age of 14.7 years (range, 12-17). All patients had a minimum follow-up of 18 months (range, 18 to 40 months). The average preoperative Cobb angle was 49.8° (range, 40° to 86°). The average number of levels fused was 9.8 (range, 6-15). Patients had a minimum postoperative follow-up of 18 months. At final follow-up, the average Cobb angle correction was 77.8% (range, 43.4 to 92.5%). There was no obvious loss in the correction, and the average loss of correction was 1.1° (range, 0° to 4°). There was no pseudarthrosis and no major complications.</p> <p>Conclusions</p> <p><it>In situ </it>autograft bone combined with allograft bone may be a promising method enhances spinal fusion in AIS treated with pedicle screw placement. By eliminating the need for iliac crest bone harvesting, significant morbidity may be avoided.</p

    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1

    Get PDF
    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1¿ strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression

    Surgical treatment of scoliosis: a review of techniques currently applied

    Get PDF
    In this review, basic knowledge and recent innovation of surgical treatment for scoliosis will be described. Surgical treatment for scoliosis is indicated, in general, for the curve exceeding 45 or 50 degrees by the Cobb's method on the ground that

    Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31) is obviously up-regulated in colorectal cancer (CRC), there is no study on the functional roles of miR-31 in CRC.</p> <p>Methods</p> <p>Anti-miR™ miRNA 31 inhibitor (anti-miR-31) is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116<sup>p53+/+ </sup>and HCT-116<sup>p53-/-</sup>colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU), cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines.</p> <p>Results</p> <p>Real-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116<sup>p53+/+ </sup>and 67.8% in HCT-116<sup>p53-/-</sup>cell line (<it>p </it>= 0.042 and 0.046). MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116<sup>p53+/+ </sup>or HCT-116<sup>p53-/-</sup>. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (<it>p </it>= 0.038 and 0.044). Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116<sup>p53+/+ </sup>and HCT-116<sup>p53-/-</sup>(<it>p </it>= 0.040 and 0.001). The invasive ability of the cells were increased by 8-fold in HCT-116<sup>p53+/+ </sup>and 2-fold in HCT-116<sup>p53-/- </sup>(<it>p </it>= 0.045 and 0.009). Suppression of miR-31 had no effect on cell cycle and colony formation (<it>p </it>> 0.05).</p> <p>Conclusions</p> <p>Suppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.</p
    corecore