11 research outputs found

    Thermoresponsive smart copolymer coatings based on P(NIPAM co-HEMA) and P(OEGMA-co-HEMA) brushes for regenerative medicine

    Get PDF
    The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2- hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy

    Temperature- and pH-responsive schizophrenic copolymer brush coatings with enhanced temperature response in pure water

    Get PDF
    Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ~45° with temperature, compared to 17−18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc_{c} and disrupted above Tc_{c} when polymer−polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T Tc_{c}, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc_{c} of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9

    Impact of the various buffer solutions on the temperature‑responsive properties of POEGMA‑grafted brush coatings

    No full text
    The effect of temperature and buffer solutions with different pH (often used in biomedical applications) on the behavior of POEGMA brush coatings, synthesized without incorporated functional groups, was for the first time studied in details using water contact angle (CA) measurements and atomic force microscopy (AFM). Thermal response of grafted brush-coatings based on poly(oligo(ethylene glycol) methacrylate)s (POEGMA)s is driven by lower critical solution temperature (LCST) phenomenon. Obtained CA and AFM results suggest strong impact of the buffer solutions on the values of LCST transition and contact angle ranges, as well as on coatings morphology. In turn, ellipsometry data reflect penetration of salt ions from buffer solutions into brush-coatings. In contrast to “typical” behavior of POEGMA coatings in water, different mechanisms available below LCST in the buffer solutions destroy hydrated layers surrounding POEGMA macromolecules leading to their collapse

    Passive antifouling and active self-disinfecting antiviral surfaces

    No full text
    Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning

    Temperature-controlled orientation of proteins on temperature-responsive grafted polymer brushes : poly(butyl methacrylate) vs poly(butyl acrylate) : morphology, wetting, and protein adsorption

    No full text
    Poly(n-butyl methacrylate) (PBMA) or poly(n-butyl acrylate) (PBA)-grafted brush coatings attached to glass were successfully prepared using atom-transfer radical polymerization "from the surface". The thicknesses and composition of the PBMA and PBA coatings were examined using ellipsometry and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. For PBMA, the glass-transition temperature constitutes a range close to the physiological limit, which is in contrast to PBA, where the glass-transition temperature is around −55 °C. Atomic force microscopy studies at different temperatures suggest a strong morphological transformation for PBMA coatings, in contrast to PBA, where such essential changes in the surface morphology are absent. Besides, for PBMA coatings, protein adsorption depicts a strong temperature dependence. The combination of bovine serum albumin and anti-IgG structure analysis with the principal component analysis of ToF-SIMS spectra revealed a different orientation of proteins adsorbed to PBMA coatings at different temperatures. In addition, the biological activity of anti-IgG molecules adsorbed at different temperatures was evaluated through tracing the specific binding with goat IgG

    Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles

    No full text
    Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) – POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested
    corecore