712 research outputs found

    Results of subionospheric radio LF monitoring prior to the Tokachi (M=8, Hokkaido, 25 September 2003) earthquake

    Get PDF
    Results of simultaneous LF subionospheric monitoring over two different propagation paths prior to the very strong Tokachi earthquake (near the east coast of Hokkaido Island, 25 September 2003) of magnitude 8.3 are presented firstly. Nighttime amplitude fluctuations of the Japanese Time Standard Transmitter (JG2AS, 40kHz) signal received at Moshiri (Japan, 142°E, 44°N) and at Petropavlovsk-Kamchatski (Russia, 158°E, 53°N) were analyzed. As a possible precursory signature we observed synchronous intensification of quasi periodical 16-day variations of the dispersion in the signals received at both observation stations before the earthquake. The strongest deviations observed as a rule were depletions of signal amplitude probably connected with increase of loss in the ionosphere by the enhancement of turbulence. This is due to dissipation of internal gravity waves (IGW) at the lower ionosphere heights. A scheme for seismo-IGW-planetary waves (PW) interconnection has been justified to explain the observed connection with strong earthquakes. It considers the seasonal variability in the signal

    Analytic Model Of Electron Self-Injection In A Plasma Wakefield Accelerator In The Strongly Nonlinear Bubble Regime

    Get PDF
    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.Physic

    Monoenergetic Acceleration Of A Target Foil By Circularly Polarized Laser Pulse In Rpa Regime Without Thermal Heating

    Get PDF
    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationery: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.Physic

    Interplay of bulk and interface effects in the electric-field driven transition in magnetite

    Full text link
    Contact effects in devices incorporating strongly-correlated electronic materials are comparatively unexplored. We have investigated the electrically-driven phase transition in magnetite (100) thin films by four-terminal methods. In the lateral configuration, the channel length is less than 2 μ\mum, and voltage-probe wires \sim100 nm in width are directly patterned within the channel. Multilead measurements quantitatively separate the contributions of each electrode interface and the magnetite channel. We demonstrate that on the onset of the transition contact resistances at both source and drain electrodes and the resistance of magnetite channel decrease abruptly. Temperature dependent electrical measurements below the Verwey temperature indicate thermally activated transport over the charge gap. The behavior of the magnetite system at a transition point is consistent with a theoretically predicted transition mechanism of charge gap closure by electric field.Comment: 6 pages, 5 figures, to appear in PR

    Nanogaps with very large aspect ratios for electrical measurements

    Full text link
    For nanoscale electrical characterization and device fabrication it is often desirable to fabricate planar metal electrodes separated by large aspect ratio gaps with interelectrode distances well below 100 nm. We demonstrate a self-aligned process to accomplish this goal using a thin Cr film as a sacrificial etch layer. The resulting gaps can be as small as 10 nm and have aspect ratios exceeding 1000, with excellent interelectrode isolation. Such Ti/Au electrodes are demonstrated on Si substrates and are used to examine a voltage-driven transition in magnetite nanostructures. This shows the utility of this fabrication approach even with relatively reactive substrates.Comment: 4 pages, 4 figure

    Results of subionospheric radio LF monitoring prior to the Tokachi (M=8, Hokkaido, 25 September 2003) earthquake

    No full text
    International audienceResults of simultaneous LF subionospheric monitoring over two different propagation paths prior to the very strong Tokachi earthquake (near the east coast of Hokkaido Island, 25 September 2003) of magnitude 8.3 are presented firstly. Nighttime amplitude fluctuations of the Japanese Time Standard Transmitter (JG2AS, 40kHz) signal received at Moshiri (Japan, 142°E, 44°N) and at Petropavlovsk-Kamchatski (Russia, 158°E, 53°N) were analyzed. As a possible precursory signature we observed synchronous intensification of quasi periodical 16-day variations of the dispersion in the signals received at both observation stations before the earthquake. The strongest deviations observed as a rule were depletions of signal amplitude probably connected with increase of loss in the ionosphere by the enhancement of turbulence. This is due to dissipation of internal gravity waves (IGW) at the lower ionosphere heights. A scheme for seismo-IGW-planetary waves (PW) interconnection has been justified to explain the observed connection with strong earthquakes. It considers the seasonal variability in the signal
    corecore