18 research outputs found
The LUX-ZEPLIN (LZ) Experiment
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements
LUX-ZEPLIN (LZ) Technical Design Report
In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters
The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10−48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented
Recommended from our members
Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber
The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. We follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC
Recommended from our members
Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber
The dual-phase xenon time projection chamber (TPC) is a powerful tool for
direct-detection experiments searching for WIMP dark matter, other dark matter
models, and neutrinoless double-beta decay. Successful operation of such a TPC
is critically dependent on the ability to hold high electric fields in the bulk
liquid, across the liquid surface, and in the gas. Careful design and
construction of the electrodes used to establish these fields is therefore
required. We present the design and production of the LUX-ZEPLIN (LZ)
experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid
design drivers are discussed, with emphasis placed on design of the electron
extraction region. We follow this with a description of the grid production
process and a discussion of steps taken to validate the LZ grids prior to
integration into the TPC
Recommended from our members
Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber
The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment’s high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. We follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC