305 research outputs found

    Joint distributions of waves and rain

    Get PDF
    The transfer of gases between the atmosphere and ocean is affected by a number of processes, of which wave action and rainfall are two of potential significance. Efforts have been made to quantify separately their contributions; however such assessments neglect the interaction of these phenomena. Here we look at the correlation statistics of waves and rain to note which regions display a strong association between rainfall and the local sea state. The conditional probability of rain varies from ~0.5% to ~15%, with most of the equatorial belt (which contains the ITCZ) showing a greater likelihood of rain at the lowest sea states. In contrast the occurrence of rain is independent of wave height in the Southern Ocean. The 1997/98 El Niño enhances the frequency of rain in some Pacific regions, with this change showing some association with wave conditions

    Offsetting is a dangerous smokescreen for inaction

    Get PDF
    This is the final version. Available from the Ecological Society of America via the DOI in this recor

    Comentarios a la ponencia "Igualdades, desigualdades y derechos", presentada por Mirta Lobato

    Get PDF
    Teniendo en cuenta -como advierte Mirta Lobato a los comentaristas- que cuando habla de desigualdades en su ponencia se refiere a que "el trabajo es el eje articulador de estas reflexiones", y sin dejar de reconocer la importancia que cabe a los otros temas y sujetos sobre los que tan bien desarrolla su exposición, quiero centrarme en un grupo que estoy estudiando desde hace unos años, como es el de los inmigrantes limítrofes a la Argentina de fin de siglo XX e inicios del XXI. Para ello, voy a analizar brevemente -como así lo exigen las reglas del comentario- a estos sujetos sociales, a quienes, como también ella afirma, ya los habríamos de encontrar censalmente a inicios del siglo pasado, aunque su visibilidad fuera menor porque aún no habían arribado a Buenos Aires; es decir, al escenario donde "las cosas suceden".Fil: Benencia, Roberto Rodolfo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    Get PDF
    The presence of vertical temperature and salinity gradients in the upper ocean and the occur- rence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require atten- tion to variability in the upper ocean and to the limited validity of assuming ‘‘constant chemistry’’ in trans- forming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects

    Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordOcean CO2 uptake accounts for 20–40% of the post-industrial sink for anthropogenic CO2. The uptake rate is the product of the CO2 interfacial concentration gradient and its transfer velocity, which is controlled by spatial and temporal variability in near-surface turbulence. This variability complicates CO2 flux estimates and in large part reflects variable sea surface microlayer enrichments in biologically derived surfactants that cause turbulence suppression. Here we present a direct estimate of this surfactant effect on CO2 exchange at the ocean basin scale, with derived relationships between its transfer velocity determined experimentally and total surfactant activity for Atlantic Ocean surface seawaters. We found up to 32% reduction in CO2 exchange relative to surfactant-free water. Applying a relationship between sea surface temperature and total surfactant activity to our results gives monthly estimates of spatially resolved ‘surfactant suppression’ of CO2 exchange. Large areas of reduced CO2 uptake resulted, notably around 20° N, and the magnitude of the Atlantic Ocean CO2 sink for 2014 was decreased by 9%. This direct quantification of the surfactant effect on CO2 uptake at the ocean basin scale offers a framework for further refining estimates of air–sea gas exchange up to the global scale.This work was supported by grants from the Leverhulme Trust to R.C.U.G. (RPG-303) and the UK Natural Environment Research Council (NERC) to R.C.U.G. (NE/K00252X/1) and J.D.S. (NE/K002511/1). Both NERC grants are components of RAGNARoCC (Radiatively Active Gases from the North Atlantic Region and Climate Change), which contributes to NERC's Greenhouse Gas Emissions and Feedbacks programme (www.nerc.ac.uk/research/funded/programmes/greenhouse). J.D.S. and I.A. acknowledge additional support from the European Space Agency (grant 4000112091/14/I-LG). R.P. acknowledges support from T. Wagner. This study is a contribution to the international IMBeR project and was supported by UK NERC National Capability funding to Plymouth Marine Laboratory and the National Oceanography Centre, Southampton. This is contribution no. 324 of the AMT programme

    Community Review of Southern Ocean Satellite Data Needs

    Get PDF
    This review represents the Southern Ocean community’s satellite data needs for the coming decade. Developed through widespread engagement, and incorporating perspectives from a range of stakeholders (both research and operational), it is designed as an important community-driven strategy paper that provides the rationale and information required for future planning and investment. The Southern Ocean is vast but globally connected, and the communities that require satellite-derived data in the region are diverse. This review includes many observable variables, including sea-ice properties, sea-surface temperature, sea-surface height, atmospheric parameters, marine biology (both micro and macro) and related activities, terrestrial cryospheric connections, sea-surface salinity, and a discussion of coincident and in situ data collection. Recommendations include commitment to data continuity, increase in particular capabilities (sensor types, spatial, temporal), improvements in dissemination of data/products/uncertainties, and innovation in calibration/validation capabilities. Full recommendations are detailed by variable as well as summarized. This review provides a starting point for scientists to understand more about Southern Ocean processes and their global roles, for funders to understand the desires of the community, for commercial operators to safely conduct their activities in the Southern Ocean, and for space agencies to gain greater impact from Southern Ocean-related acquisitions and missions.The authors acknowledge the Climate at the Cryosphere program and the Southern Ocean Observing System for initiating this community effort, WCRP, SCAR, and SCOR for endorsing the effort, and CliC, SOOS, and SCAR for supporting authors’ travel for collaboration on the review. Jamie Shutler’s time on this review was funded by the European Space Agency project OceanFlux Greenhouse Gases Evolution (Contract number 4000112091/14/I-LG)

    Spatial ecology of loggerhead turtles: Insights from stable isotope markers and satellite telemetry

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAim Using a combination of satellite telemetry and stable isotope analysis (SIA), our aim was to identify foraging grounds of loggerhead turtles (Caretta caretta) at important rookeries in the Mediterranean, examine foraging ground fidelity, and across 25 years determine the proportion of nesting females recruiting from each foraging region to a major rookery in Cyprus. Location Mediterranean Sea. Methods Between 1993 and 2018, we investigated the spatial ecology of loggerhead turtles from rookeries in Cyprus and Greece using satellite telemetry (n = 55 adults) and SIA of three elements (n = 296). Results Satellite telemetry from both rookeries revealed the main foraging areas as the Adriatic region (Cyprus: 4% of individuals, Greece: 55%), Tunisian Plateau (Cyprus: 16%, Greece: 40%) and the eastern Mediterranean (Cyprus: 80%, Greece: 5%). Combining satellite telemetry and SIA allowed 64% of all nesting females to be assigned to; the Adriatic region (Cyprus: 2%, Greece: 38.5%), Tunisian Plateau (Cyprus: 47%, Greece: 38.5%) and the eastern Mediterranean (Cyprus: 51%, Greece: 23%), which are markedly different to proportions obtained using satellite telemetry. The proportion of the Cyprus nesting cohort using each foraging region did not change significantly, with the exception that individuals foraging in the Adriatic region are only present in the Cyprus nesting population from 2012. Repeat satellite tracking (n = 3) and temporal consistency in isotope ratios (n = 36) of Cyprus females, strongly suggest foraging ground fidelity over multiple decades. Main conclusions This study demonstrates the advantages of combining satellite telemetry and SIA to investigate spatial ecology at a population level. The importance of the Tunisian Plateau for foraging is demonstrated. This study indicates that females generally show high fidelity to foraging grounds and shows a potential recent shift to foraging in the Adriatic region for Cyprus females, while the importance of other regions persists across decades, thus providing baselines to develop and assess conservation strategies.Natural Environment Research Council (NERC

    Recent trends in the wind-driven California current upwelling system

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordLong-term changes in the marine ecosystems of the Eastern Boundary Upwelling Systems (EBUS) are predicted due to anthropogenic climate change. In particular, global ocean acidification is having a profound effect on the coastal waters of the EBUS, affecting the entire trophic chain, net primary production (NPP) and related economic activities such as fisheries. Another predicted change related to human activity is that of upwelling dynamics with expected long-term changes in upwelling winds as proposed by Bakun (1990), Bakun et al. (2015) and Rykaczewski et al. (2015). Although these predicted long-term changes may emerge only later in the 21st century, this has fueled many studies using historical data. Long-term increase in upwelling winds has thus been a much debated topic, showing that there is considerable uncertainty depending on the EBUS considered, the effect of natural climate fluctuations, the choice of wind dataset, the time period considered, and the methodologies and significance tests applied. Therefore, there is an immediate interest in being able to monitor upwelling using verified and self-consistent wind data sets. This work focused on a sensitivity study of the estimated trends in upwelling winds in the California Current Upwelling System (CCUS), for the most recent period 1996–2018, using the two state-of-the-art satellite wind analyses and two atmospheric model re-analyses. Embedded into the strong modulation by natural climate fluctuations on interannual and decadal time scales, we do see an increase in upwelling-favorable winds in the core of the CCUS, with a local increase of more than 25% in seasonal upwelling transport for the period considered. In this central upwelling zone, a good agreement on stronger equatorward winds for the winter and spring seasons is found between the different datasets, although with different significance levels. Conversely, conflicting results are found in the southernmost part of the CCUS between the satellite analyses and the model reanalyses. Systematic, time-dependent differences are found between the wind products, highlighting the need to further investigate the poorly documented temporal stability of these widely used wind long-term climatology products. The observed spatial structuring of the estimated wind trends is consistent with the trend analysis of water chlorophyll-a, partial pressure of CO2, and basity (pH) analysis products. This result is consistent with changes being important for modulating the carbonate system within the CCUS.European Space Agenc

    Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity

    Get PDF
    We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic

    Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this nrecordAquaculture is the fastest growing food sector globally and protein provisioning from aquaculture now exceeds that from wild capture fisheries. There is clear potential for the further expansion of marine aquaculture (mariculture), but there are associated risks. Some naturally occurring algae can proliferate under certain environmental conditions, causing deoxygenation of seawater, or releasing toxic compounds (phycotoxins), which can harm wild and cultured finfish and shellfish, and also human consumers. The impacts of these so-called ‘harmful algal blooms’ (HABs) amount to approximately 8 $billion/yr globally, due to mass mortalities in finfish, harvesting bans preventing the sale of shellfish that have accumulated unsafe levels of HAB phycotoxins, and unavoided human health costs. Here we provide a critical review and analysis of HAB impacts on mariculture (and wild capture fisheries) and recommend research to identify ways to minimise their impacts to the industry. We examine causal factors for HAB development in inshore versus offshore locations and consider how mariculture itself, in its various forms, may exacerbate or mitigate HAB risk. From a management perspective, there is considerable scope for strategic siting of offshore mariculture and holistic Environmental Approaches for Aquaculture, such as offsetting nutrient outputs from finfish farming, via the co-location of extractive shellfish and macroalgae. Such pre-emptive, ecosystem-based approaches are preferable to reactive physical, chemical or microbiological control measures aiming to remove or neutralise HABs and their phycotxins. To facilitate mariculture expansion and long-term sustainability, it is also essential to evaluate HAB risk in conjunction with climate change.European Martime and Fisheries Fund (EMFF
    • …
    corecore