43 research outputs found
Lipid Chaperones and Metabolic Inflammation
Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs), a family of lipid chaperones, as well as endoplasmic reticulum (ER) stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis
Serum Fatty Acid-Binding Protein 4 Is a Predictor of Cardiovascular Events in End-Stage Renal Disease
BACKGROUND: Fatty acid-binding protein 4 (FABP4/A-FABP/aP2), a lipid chaperone, is expressed in both adipocytes and macrophages. Recent studies have shown that FABP4 is secreted from adipocytes and that FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the impact of FABP4 concentrations on prognosis. We tested the hypothesis that FABP4 level predicts prognosis of patients with end-stage renal disease (ESRD), a group at high risk for atherosclerosis-associated morbidity and mortality. METHODS AND RESULTS: Biochemical markers including FABP4 were determined in 61 ESRD patients on chronic hemodialysis (HD). Serum FABP4 level in females (404.2±30.5 ng/ml) was significantly higher than that in males (315.8±30.0 ng/ml), and the levels in ESRD patients were about 20-times higher than those in age-, gender- and body mass index (BMI)-matched control subjects with normal renal function. FABP4 level was decreased by 57.2% after HD and was positively correlated with blood pressure, BMI, and levels of lipids and insulin. Multiple regression analysis indicated that HD duration, BMI, and triglycerides level were independent determinants for FABP4 level. ESRD patients with high FABP4 levels had higher cardiovascular mortality during the 7-year follow-up period. Cox proportional hazard regression analysis showed that logarithmically transformed FABP4 level was an independent predictor of cardiovascular death adjusted for age, gender, HD duration, BMI, and triglycerides level (hazard ratio, 7.75; 95% CI, 1.05-25.31). CONCLUSION: These findings suggest that FABP4 level, being related to adiposity and metabolic disorders, is a novel predictor of cardiovascular mortality in ESRD
Reduction of circulating FABP4 level by treatment with omega-3 fatty acid ethyl esters
BACKGROUND: Fatty acid-binding protein 4 (FABP4/A-FABP/aP2) mainly expressed in adipocytes is secreted and acts as an adipokine. Increased circulating FABP4 level is associated with obesity, insulin resistance and atherosclerosis. However, little is known about the modulation of serum FABP4 level by drugs including anti-dyslipidemic agents. METHODS: Patients with dyslipidemia were treated with omega-3 fatty acid ethyl esters (4 g/day; n = 14) containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 4 weeks. Serum FABP4 level was measured before and after treatment. Expression and secretion of FABP4 were also examined in mouse 3T3-L1 adipocytes treated with EPA or DHA. RESULTS: Treatment with omega-3 fatty acid ethyl esters significantly decreased triglycerides and serum FABP4 level (13.5 ± 1.5 vs. 11.5 ± 1.1 ng/ml, P = 0.017). Change in FABP4 level by omega-3 fatty acids was negatively correlated with change in levels of EPA + DHA (r = −0.643, P = 0.013), EPA (r = −0.540, P = 0.046) and DHA (r = −0.650, P = 0.011) but not change in the level of triglycerides or other fatty acid composition. Treatment of 3T3-L1 adipocytes with EPA or DHA had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by treatment with EPA or DHA. CONCLUSIONS: Omega-3 fatty acids decrease circulating FABP4 level, possibly by reducing expression and consecutive secretion of FABP4 in adipocytes. Reducing FABP4 level might be involved in suppression of cardiovascular events by omega-3 fatty acids
Elevation of circulating fatty acid-binding protein 4 is independently associated with left ventricular diastolic dysfunction in a general population
Hitomi (ASTRO-H) X-ray Astronomy Satellite
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
Ectopic Expression of Fatty Acid-Binding Protein 4 in the Glomerulus Is Associated with Proteinuria and Renal Dysfunction
<b><i>Background/Aims:</i></b> Fatty acid-binding proteins (FABPs) are a family of intracellular lipid chaperones. Among FABPs, FABP1 (liver FABP) is expressed in proximal tubular epithelial cells in the kidney, and urinary FABP1 has been reported to reflect damage of proximal tubular epithelial cells. However, roles of other FABP isoforms in renal pathologies have not been reported. Recently, FABP4 (adipocyte FABP/aP2) was reported to be expressed in peritubular capillaries (PTCs), but not in glomerular capillaries in the normal kidney. We examined the hypothesis that pathological conditions alter the level and localization of FABP4 expression in the kidney, which mediates renal dysfunction. <b><i>Methods:</i></b> A total of 112 consecutive patients who underwent renal biopsy were retrospectively enrolled. Expression of FABP4 protein and mRNA in the kidney was examined by immunohistochemistry and in situ hybridization, respectively. The ratio of FABP4-positive area to total area within glomeruli (G-FABP4-Area), urinary protein level (U-Protein), and change in estimated glomerular filtration rate (eGFR) 1 year after biopsy were examined. <b><i>Results:</i></b> FABP4 protein and mRNA were expressed not only in PTCs, but also in endothelial cells and macrophages in the glomerulus. G-FABP4-Area was correlated with U-Protein (r = 0.497, p < 0.001). As a subanalysis, in patients with IgA nephropathy (n = 34), G-FABP4-Area was significantly larger in cases with an endocapillary proliferative lesion, and change in eGFR was negatively correlated with G-FABP4-Area at baseline (r = -0.537, p = 0.008). <b><i>Conclusion:</i></b> Ectopic FABP4 expression in the glomerulus is induced by renal diseases and is closely associated with proteinuria and renal dysfunction.</jats:p
Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling of the pulmonary artery (PA). Recently, endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) have been disclosed in various types of diseases. Here we examined whether ER stress is involved in the pathogenesis of PAH. Four weeks of chronic normobaric hypoxia increased right ventricular (RV) systolic pressure by 63% compared with that in normoxic controls and induced RV hypertrophy and medial thickening of the PA in C57BL/6J mice. Treatment with 4-phenylbutyric acid (4-PBA), a chemical chaperone, significantly reduced RV systolic pressure by 30%, attenuated RV hypertrophy and PA muscularization, and increased total running distance in a treadmill test by 70% in hypoxic mice. The beneficial effects of 4-PBA were associated with suppressed expression of inflammatory cytokines and ER stress markers, including Grp78 and Grp94 in the activating transcription factor-6 branch, sXbp1 and Pdi in the inositol-requiring enzyme-1 branch and Atf4 in the PKR-like ER kinase branch, and reduced phosphorylation of c-Jun NH2-terminal kinase and eukaryotic translation initiation factor-2α in the lung. The pattern of changes in ER stress and inflammatory markers by 4-PBA in the lung of the PAH model was reproduced in PA smooth muscle cells by chronic stimulation of platelet-derived growth factor-BB or hypoxia. Furthermore, knockdown of each UPR branch sensor activated other branches and promoted proliferation of PA smooth muscle cells. The findings indicate that activation of all branches of the UPR and accompanying inflammation play a major role in the pathogenesis of PAH, and that chemical chaperones are potentially therapeutic agents for PAH. </jats:p
