876 research outputs found

    Spin-axis attitude estimation and magnetometer bias determination for the AMPTE mission

    Get PDF
    Algorithms were developed for magnetometer biases and spin axis attitude calculation. Numerical examples of the performance of the algorithm are given

    Short period attractors and non-ergodic behavior in the deterministic fixed energy sandpile model

    Get PDF
    We study the asymptotic behaviour of the Bak, Tang, Wiesenfeld sandpile automata as a closed system with fixed energy. We explore the full range of energies characterizing the active phase. The model exhibits strong non-ergodic features by settling into limit-cycles whose period depends on the energy and initial conditions. The asymptotic activity ρa\rho_a (topplings density) shows, as a function of energy density ζ\zeta, a devil's staircase behaviour defining a symmetric energy interval-set over which also the period lengths remain constant. The properties of ζ\zeta-ρa\rho_a phase diagram can be traced back to the basic symmetries underlying the model's dynamics.Comment: EPL-style, 7 pages, 3 eps figures, revised versio

    Attitude and Phase Synchronization of Formation Flying Spacecraft: Lagrangian Approach

    Get PDF
    This article presents a unified synchronization framework with application to precision formation flying spacecraft. Central to the proposed innovation, in applying synchroniza- tion to both translational and rotational dynamics in the Lagrangian form, is the use of the distributed stability and performance analysis tool, called contraction analysis that yields exact nonlinear stability proofs. The proposed decentralized tracking control law synchronizes the attitude of an arbitrary number of spacecraft into a common time-varying trajectory with global exponential convergence. Moreover, a decentralized translational tracking control law based on phase synchronization is presented, thus enabling coupled translational and rotational maneuvers. While the translational dynamics can be adequately controlled by linear control laws, the proposed method permits highly nonlinear systems with nonlinearly coupled inertia matrices such as the attitude dynamics of space-craft whose large and rapid slew maneuvers justify the nonlinear control approach. The proposed method integrates both the trajectory tracking and synchronization problems in a single control framework

    Time-optimal synthesis of unitary transformations in coupled fast and slow qubit system

    Full text link
    In this paper, we study time-optimal control problems related to system of two coupled qubits where the time scales involved in performing unitary transformations on each qubit are significantly different. In particular, we address the case where unitary transformations produced by evolutions of the coupling take much longer time as compared to the time required to produce unitary transformations on the first qubit but much shorter time as compared to the time to produce unitary transformations on the second qubit. We present a canonical decomposition of SU(4) in terms of the subgroup SU(2)xSU(2)xU(1), which is natural in understanding the time-optimal control problem of such a coupled qubit system with significantly different time scales. A typical setting involves dynamics of a coupled electron-nuclear spin system in pulsed electron paramagnetic resonance experiments at high fields. Using the proposed canonical decomposition, we give time-optimal control algorithms to synthesize various unitary transformations of interest in coherent spectroscopy and quantum information processing.Comment: 8 pages, 3 figure

    Accurate computation of quaternions from rotation matrices

    Get PDF
    The final publication is available at link.springer.comThe main non-singular alternative to 3×3 proper orthogonal matrices, for representing rotations in R3, is quaternions. Thus, it is important to have reliable methods to pass from one representation to the other. While passing from a quaternion to the corresponding rotation matrix is given by Euler-Rodrigues formula, the other way round can be performed in many different ways. Although all of them are algebraically equivalent, their numerical behavior can be quite different. In 1978, Shepperd proposed a method for computing the quaternion corresponding to a rotation matrix which is considered the most reliable method to date. Shepperd’s method, thanks to a voting scheme between four possible solutions, always works far from formulation singularities. In this paper, we propose a new method which outperforms Shepperd’s method without increasing the computational cost.Peer ReviewedPostprint (author's final draft

    Spontaneous symmetry breaking in strong-coupling lattice QCD at high density

    Full text link
    We determine the patterns of spontaneous symmetry breaking in strong-coupling lattice QCD in a fixed background baryon density. We employ a next-nearest-neighbor fermion formulation that possesses the SU(N_f)xSU(N_f) chiral symmetry of the continuum theory. We find that the global symmetry of the ground state varies with N_f and with the background baryon density. In all cases the condensate breaks the discrete rotational symmetry of the lattice as well as part of the chiral symmetry group.Comment: 10 pages, RevTeX 4; added discussion of accidental degeneracy of vacuum after Eq. (35

    Numerical investigations of apatite ^4He/^3He thermochronometry

    Get PDF
    Apatite ^4He/^3He thermochronometry has the potential to constrain cooling histories for individual samples provided that several presently untested assumptions are valid. Here we simulate the sensitivity of ^4He/^3He spectra to assumptions regarding geometric model, crystallographic anisotropy, broken grain terminations, parent nuclide zonation, and the accuracy of results obtained from analyses of aggregates of multiple crystals. We find that ^4He/^3He spectra obtained from a cylinder with isotropic diffusion are almost indistinguishable from those obtained from an equivalent sphere with an equivalent initial ^4He distribution. Under similar conditions anisotropic diffusion from the cylinder can greatly bias ^4He/^3He spectra, but only if diffusion is >10 times faster in the axial than the radial direction. Existing data argue against anisotropy of this magnitude. We find that analysis of apatites with broken terminations will also bias ^4He/^3He spectra, but not greatly so. In contrast, we find that zonation of a factor of 3 in parent nuclide concentration produces ^4He/^3He spectra that deviate substantially from the homogeneous model. When parent nuclides are highly concentrated near the grain rim and/or cooling is fast, the resulting ^4He/^3He spectra will be readily identified as aberrant. However, more subtle zonation, higher concentrations in the grain interior, or samples that have cooled slowly regardless of zonation style can yield ^4He/^3He spectra that look acceptable but will lead to inaccurate thermochronometric interpretation if parent homogeneity is assumed. Finally, we find that analysis of an aggregate of crystals with identical ^4He distributions can yield ^4He/^3He spectra (and diffusion Arrhenius arrays) that are very different from those that would be obtained on the individual crystals if even small variations in He diffusion exist among the grains. Overall, our observations suggest that modeling tools that assume spherical geometry and isotropic diffusion are appropriate for interpreting apatite ^4He/^3He spectra. However, it is essential to analyze only individual crystals and to assess the degree of parent nuclide zonation in those crystals

    Phase Locking, Devil's Staircases, Farey Trees, and Arnold Tongues in Driven Vortex Lattices with Periodic Pinning

    Full text link
    Using numerical simulations, we observe phase locking, Arnold tongues, and Devil's staircases for vortex lattices driven at varying angles with respect to an underlying superconducting periodic pinning array. This rich structure should be observalble in transport measurments. The transverse V(I)V(I) curves have a Devil's staircase structure, with plateaus occurring near the driving angles along symmetry directions of the pinning array. Each of the plateaus corresponds to a different dyanmical phase with a distinctive vortex structure and flow pattern.Comment: accepted to Physical Review Letter

    Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field

    Full text link
    We present a variational study of both unpaired and spin-singlet paired states induced in a two-dimensional electron gas at low density by a perpendicular magnetic field. It is based on an improved circular-cell approximation which leads to a number of closed analytical results. The ground-state energy of the Wigner crystal containing a single electron per cell in the lowest Landau level is obtained as a function of the filling factor Îœ\nu: the results are in good agreement with those of earlier approaches and predict Îœc≈0.25\nu_{c} \approx 0.25 for the upper filling factor at which the solid-liquid transition occurs. A novel localized state of spin-singlet electron pairs is examined and found to be a competitor of the unpaired state for filling factor Îœ>1\nu >1. The corresponding phase boundary is quantitatively displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to appear in Phys. Rev.

    On the Applicability of Weak-Coupling Results in High Density QCD

    Get PDF
    Quark matter at asymptotically high baryon chemical potential is in a color superconducting state characterized by a gap Delta. We demonstrate that although present weak-coupling calculations of Delta are formally correct for mu -> Infinity, the contributions which have to this point been neglected are large enough that present results can only be trusted for mu >> mu_c ~ 10^8 MeV. We make this argument by using the gauge dependence of the present calculation as a diagnostic tool. It is known that the present calculation yields a gauge invariant result for mu -> Infinity; we show, however, that the gauge dependence of this result only begins to decrease for mu > mu_c, and conclude that the result can certainly not be trusted for mu < mu_c. In an appendix, we set up the calculation of the influence of the Meissner effect on the magnitude of the gap. This contribution to Delta is, however, much smaller than the neglected contributions whose absence we detect via the resulting gauge dependence.Comment: 21 pages, 3 figures, uses LaTeX2e and ReVTeX, updated figures, made minor text change
    • 

    corecore