143 research outputs found

    A STUDY ON THE REPRESENTATIVE POINT OF HORSE’S CENTER OF GRAVITY

    Get PDF
    The purpose of this study was to explore are there bony landmarks on the horse body’s surface matching the motion of center of gravity. The relationship between the bony landmarks and the center of gravity during actual race under Buchner and Kubo horse inertial models were analyzed. Results showed Buchner and Kubo models had high consistency on the kinematic parameters of the center of gravity. Comparing the relationship of the middle of mesoscapula and tail root with the center of gravity in displacement, velocity and the absolute difference, it was found that the middle of mesoscapula under Kubo model is a suitable represent point of the center of gravity among the characteristic points of two models in the motion of observed race horses

    Methyl 2-(5-fluoro-1H-indol-3-yl)-2-oxoacetate

    Get PDF
    The indolyl portion of the title mol­ecule, C11H8FNO3, is flat, the five- and six-membered rings making a dihedral angle of 0.815 (6)°. Inter­molecular N—H⋯O hydrogen bonds link adjacent mol­ecules into a linear chain. Slipped π–π stacking inter­actions between two neighboring indole groups further consolidate the mol­ecules into a three-dimensional supra­molecular architecture [centroid–centroid distances = 3.555 (10) and 3.569 (10) Å]

    The Remote Control System Based on the Virtual Reality

    Get PDF

    Carbonation of the synthetic calcium silicate hydrate (C-S-H) under different concentrations of CO2: Chemical phases analysis and kinetics

    Get PDF
    In this study, the chemical phases analysis and the kinetics of synthetic calcium silicate hydrate (C-S-H) under differentCO2concentrations (natural (0.03%), 3%, 10%, 20%, 50%, 100%) were investigated. For this aim, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed for microstructure characterisation. The 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) coupled with mass spectrometer (MS) were used for characterising the chemical phases before and after carbonation. From the NMR results, it was found that C-S-H would be partly decalcified under the natural condition but completely under the accelerated conditions. Two equations related to the carbonation kinetics under natural and accelerated conditions were proposed respectively. The compositions in decalcified C-S-H were not affected by the CO2 concentration. The XRD analysis showed that vaterite, aragonite and calcite were coexistent after carbonation, which would be transformed to aragonite and calcite with further carbonation. The preferential formation of the allotropic calcium carbonate was not impacted by the concentration of CO2 either. Based on the TGA-MS test, the stoichiometric formula of synthetic C-S-H was determined with CaO\ue2\u27™SiO2\ue2\u27™0.87H2O or C\ue2 S\ue2 H0.87. In addition, a carbonation kinetics model was proposed to learn the carbonation kinetics of C-S-H carbonated in different CO2 concentrations. The experimental data fitted well with the model. The carbonation kinetics between 3% and 20% CO2 are similar, but different from that under 50% and 100% CO

    The Portable Gas Analyzer Based on the Spectrum

    Get PDF

    Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of plants with HrpN<sub>Ea</sub>, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid <it>Myzus persicae</it>, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the <it>Arabidopsis thaliana </it>(Arabidopsis) PP2-encoding gene <it>AtPP2-A1 </it>in resistance to <it>M. persicae </it>when the plant was treated with HrpN<sub>Ea </sub>and after the plant was transformed with <it>AtPP2-A1</it>.</p> <p>Results</p> <p>The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic <it>M. persicae </it>females on leaves of Arabidopsis plants treated with HrpN<sub>Ea </sub>and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpN<sub>Ea </sub>in wild-type (WT) Arabidopsis but not in <it>atpp2-a1</it>/E/142, the plant mutant that had a defect in the <it>AtPP2-A1 </it>gene, the most HrpN<sub>Ea</sub>-responsive of 30 <it>AtPP2 </it>genes. In WT rather than <it>atpp2-a1</it>/E/142, the deterrent effect of HrpN<sub>Ea </sub>treatment on the phloem-feeding activity accompanied an enhancement of <it>AtPP2-A1 </it>expression. In PP2OETAt (<it>AtPP2-A1</it>-overexpression transgenic <it>Arabidopsis thaliana</it>) plants, abundant amounts of the <it>AtPP2-A1 </it>gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpN<sub>Ea</sub>-treated WT and PP2OETAt plants, respectively, compared with control plants.</p> <p>Conclusions</p> <p>The repression in phloem-feeding activities of <it>M. persicae </it>as a result of <it>AtPP2-A1 </it>overexpression, and as a deterrent effect of HrpN<sub>Ea </sub>treatment in WT Arabidopsis rather than the <it>atpp2-a1</it>/E/142 mutant suggest that <it>AtPP2-A1 </it>plays a role in plant resistance to the insect, particularly at the phloem-feeding stage. The accompanied change of aphid population in leaf colonies suggests that the function of <it>AtPP2-A1 </it>is related to colonization of the plant.</p

    Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3.

    Get PDF
    The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer

    Argon-helium knife cryoablation plus programmed cell death protein 1 inhibitor in the treatment of advanced soft tissue sarcomas: there is no evidence of the synergistic effects of this combination therapy

    Get PDF
    BackgroundEffective treatment for advanced soft tissue sarcomas (STSs) is necessary for improved outcomes. Previous studies have suggested that cryoablation can have a synergistic effect with programmed cell death protein-1 (PD-1) inhibitor in the treatment of malignancy. This study aimed to clarify the efficacy and safety of argon-helium knife cryoablation in combination with PD-1 inhibitor in the treatment of STSs.MethodsRetrospectively collected and analyzed the clinical data of patients with advanced STS who underwent cryoablation and PD-1 inhibitor between March 2018 and December 2021.ResultsThis study included 27 patients with advanced STS. In terms of target lesions treated with cryoablation, 1 patient achieved complete response, 15 patients had partial response (PR), 10 patients had stable disease, and 1 patient had progressive disease. This corresponded to an overall response rate of 59.3% and a disease control rate of 96.3%. In terms of distant target lesions untreated with cryoablation, only two patients had a PR compared to the diameter of the lesion before ablation. The combination therapy was relatively well tolerated. None of the patients experienced treatment-related death or delayed treatment due to adverse events.ConclusionCryoablation combined with PD-1 inhibitors in the therapy of advanced STS is safe and can effectively shrink the cryoablation-target lesion. However, there is no evidence of the synergistic effects of this combination therapy

    Frozen inactivated autograft replantation for bone and soft tissue sarcomas

    Get PDF
    BackgroundThe frozen inactivation of autologous tumor bones using liquid nitrogen is an important surgical method for limb salvage in patients with sarcoma. At present, there are few research reports related to frozen inactivated autograft replantation.MethodsIn this study, we retrospectively collected the clinical data of patients with bone and soft tissue sarcoma treated with liquid nitrogen-frozen inactivated tumor bone replantation, and analyzed the safety and efficacy of this surgical method. The healing status of the frozen inactivated autografts was evaluated using the International Society of Limb Salvage (ISOLS) scoring system. Functional status of patients was assessed using the Musculoskeletal Tumor Society (MSTS) scale.ResultsThis study included 43 patients. The average length of the bone defect after tumor resection is 16.9 cm (range 6.3–35.3 cm). Patients with autograft not including the knee joint surface had significantly better healing outcomes (ISOLS scores) (80.6% ± 15% vs 28.2% ± 4.9%, P&lt;0.001) and limb function (MSTS score) (87% ± 11.6% vs 27.2% ± 4.4%, P&lt;0.001) than patients with autografts including the knee joint surface. The healing time of the end of inactivated autografts near the metaphyseal was significantly shorter than that of the end far away from the metaphyseal (9.8 ± 6.3 months vs 14.9 ± 6.3 months, P=0.0149). One patient had local recurrence, one had an autograft infection, five (all of whom had an autograft including the knee joint surface) had joint deformities, and seven had bone non-union.ConclusionFrozen inactivated autologous tumor bone replantation is safe and results in good bone healing. But this method is not suitable for patients with autograft involving the knee joint surface
    corecore