471 research outputs found

    Readings of Portable UV Spectrum Analyzer Data Based on Raspberry Pi

    Get PDF

    The Research of a New Iteration of the Circular Algorithm

    Get PDF

    A surface-enhanced Raman scattering (SERS)-active optical fiber sensor based on a three-dimensional sensing layer

    Get PDF
    AbstractTo fabricate a new surface-enhanced Raman scattering (SERS)-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D) SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection

    (S)-2-Amino-1-(pyrrolidinium-2-ylmeth­yl)pyridinium dibromide

    Get PDF
    In the title compound, C10H17N3 2+·2Br−, the pyrrolidinium ring displays an envelope conformation, with the flap N atom lying 0.564 (6) Å from the mean plane of the remaining four C atoms. The attached methyl­ene C atom, which connects the pyrrolidinium ring and the 2-amino­pyridine group, is displaced from the plane of the four pyrrolidinium C atoms by 0.811 (8) Å in the same direction as the pyrrolidinium N atom. The amine N lies on the opposite side of this plane

    The Portable Gas Analyzer Based on the Spectrum

    Get PDF

    HULL SHAPE OPTIMIZATION OF SMALL UNDERWATER VEHICLE BASED ON KRIGING-BASED RESPONSE SURFACE METHOD AND MULTI-OBJECTIVE OPTIMIZATION ALGORITHM

    Get PDF
    Small underwater vehicles have unique advantages in ocean exploration. The resistance and volume of a vehicle are key factors affecting its operation time underwater. This paper aims to develop an effective method to obtain the optimal hull shape of a small underwater vehicle using Kriging-based response surface method (RSM) and multi-objective optimization algorithm. Firstly, the hydrodynamic performance of a small underwater vehicle is numerically investigated using computational fluid dynamics (CFD) method and the value range of related design variables is determined. The mesh convergence is verified to ensure the accuracy of the calculation results. Then, by means of the Latin hypercube sampling (LHS) design of simulation, the Kriging-based RSM model is developed according to the relation between each design variable of the vehicle and the output parameters applied to the vehicle. Based on the Kriging-based RSM model, the optimal hull shape of the vehicle is determined by using Screening and MOGA. As results, the vehicle resistance reduces and volume increases obviously
    corecore