20 research outputs found

    Evaluating the Transcriptomic and Metabolic Profile of Mice Exposed to Source Drinking Water

    No full text
    Transcriptomic and metabonomic methods were used to investigate mice’s responses to drinking source water (DSW) exposure. After mice were fed with DSW for 90 days, hepatic transcriptome was characterized by microarray and serum metabonome were determined by <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy. A total of 243 differentially expressed genes (DEGs) were identified, among which 141 genes were up-regulated and 102 genes were down-regulated. Metabonomics revealed significant changes in concentrations of creatine, pyruvate, glutamine, lysine, choline, acetate, lipids, taurine, and trimethylamine oxide. Four biological pathways were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis where both gene expression and metabolite concentrations were altered in response to DSW exposure. These results highlight the significance of combined use of transcriptomic and metabonomic approaches in evaluating potential health risk induced by DSW contaminated with various hazardous materials

    Identifying Health Effects of Exposure to Trichloroacetamide Using Transcriptomics and Metabonomics in Mice (Mus musculus)

    No full text
    Microarray-based transcriptomics and one-dimensional proton nuclear magnetic resonance (<sup>1</sup>H NMR) based metabonomics approaches were employed to investigate the health effects of nitrogenous disinfection byproducts (N-DBPs) of trichloroacetamide (TCAcAm) on mice. Mice were exposed to TCAcAm at concentrations of 50, 500, and 5000 μg/L for 90 days, and hepatic transcriptome and serum metabonome and histopathological parameters were detected in comparison with those of control. TCAcAm esposures resulted in liver inflammation, weight loss (in 5000 ug/L TCAcAm group), and alterations in hepatic transcriptome and serum metabonome. Based on the differentially expressed genes and altered metabolites, several significant pathways were identified, which are associated with lipid, xenobiotics, amino acid and energy metabolism, and cell process. Moreover, integrative pathway analyses revealed that TCAcAm exposure in this study induced hepatotoxicity and cytotoxicity. These results also highlight the noninvasive prospect of transcriptomic and metabonomic approaches in evaluating the health risk of emerging N-DBPs

    Responses of Mouse Liver to Dechlorane Plus Exposure by Integrative Transcriptomic and Metabonomic Studies

    No full text
    Dechlorane plus (DP), a chlorinated flame retardant, has been widely detected in different environmental matrices and biota. However, toxicity data for DP have seldom been reported. In the present study, we investigated hepatic oxidative stress, DNA damage, and transcriptomic and metabonomic responses of male mice administered 500 mg/kg, 2000 mg/kg, and 5000 mg/kg of DP by gavage for 10 days. The results showed that DP exposure increased the level of superoxide dismutase (SOD) and 8-hydroxy-2-deoxyguanosine (8-OHdG). The microarray-based transcriptomic results demonstrated that DP exposure led to significant alteration of gene expression involved in carbohydrate, lipid, nucleotide, and energy metabolism, as well as signal transduction processes. The NMR-based metabonomic analyses corroborated these results showing changes of metabolites associated with the above altered mechanisms. Our results demonstrate that an oral exposure to DP can induce hepatic oxidative damage and perturbations of metabolism and signal transduction. These observations provide novel insight into toxicological effects and mechanisms of action of DP at the transcriptomic and metabonomic levels

    Microcystin-LR Promotes Melanoma Cell Invasion and Enhances Matrix Metalloproteinase-2/‑9 Expression Mediated by NF-κB Activation

    No full text
    This study aimed to explore the molecular mechanisms behind the stimulation effects of microcystin-LR (a well-known cyanobacterial toxin produced in eutrophic lakes or reservoirs) on cancer cell invasion and matrix metalloproteinases (MMPs) expression. Boyden chamber assay showed that microcystin-LR exposure (>12.5 nM) evidently enhanced the invasion ability of the melanoma cells (MDA-MB-435). Tumor Metastasis PCR Array demonstrated that 24 h microcystin-LR treatment (25 nM) caused overexpression of eight genes involved in tumor metastasis, including MMP-2, MMP-9, and MMP-13. Quantitative real-time PCR, Western blotting and gelatin zymography consistently demonstrated that mRNA and protein levels of MMP-2/-9 were increased in the cells after microcystin-LR exposure (<i>P</i> < 0.05 each). Immunofluorescence assay and electrophoretic mobility shift assay revealed that microcystin-LR could activate nuclear factor kappaB (NF-κB) by accelerating NF-κB translocation into the nucleus and enhancing NF-κB binding ability. Furthermore, addition of NF-κB inhibitor in culture medium could suppress the invasiveness enhancement and MMP-2/-9 overexpression. This study indicates that microcystin-LR can act as a NF-κB activator to promote MMP-2/-9 expression and melanoma cell invasion, which deserves more environmental health concerns

    Endocrine-disrupting Equivalents in Industrial Effluents Discharged to the Yangtze River. Ecotoxicology

    No full text
    Abstract The endocrine-disrupting equivalents in effluents from three chemical industry wastewater treatment systems in the vicinity of Yangtze River were determined by several transactivation reporter gene assays. Transient transfections of African green monkey kidney cell line (CV-1) were used to determine the estrogenic, antiandrogenic and anti-thyroid equivalents in the effluents. Organic extracts of the effluents contained compounds that were potent anti-androgens and the activities measured as an equivalent concentration of flutamide were 45.53, 34.65 and 91.61 nM, respectively. The extracts also contained detectable concentrations of thyroid antagonists. Estrogenic activities, measured with the reporter gene assay, were near or below the method detection limit (0.58 pM as E2). Concentrations of some of the major constituents such as di(2-ethylhexyl)phthalate, dibutyl phthalate, 2,6-dinitrotoluene and nitrobenzene were quantified. The data suggest that the reporter gene assay is useful to predication of endocrine disrupting effects in polluted aquatic body

    Endocrine-disrupting Equivalents in Industrial Effluents Discharged to the Yangtze River. Ecotoxicology

    No full text
    Abstract The endocrine-disrupting equivalents in effluents from three chemical industry wastewater treatment systems in the vicinity of Yangtze River were determined by several transactivation reporter gene assays. Transient transfections of African green monkey kidney cell line (CV-1) were used to determine the estrogenic, antiandrogenic and anti-thyroid equivalents in the effluents. Organic extracts of the effluents contained compounds that were potent anti-androgens and the activities measured as an equivalent concentration of flutamide were 45.53, 34.65 and 91.61 nM, respectively. The extracts also contained detectable concentrations of thyroid antagonists. Estrogenic activities, measured with the reporter gene assay, were near or below the method detection limit (0.58 pM as E2). Concentrations of some of the major constituents such as di(2-ethylhexyl)phthalate, dibutyl phthalate, 2,6-dinitrotoluene and nitrobenzene were quantified. The data suggest that the reporter gene assay is useful to predication of endocrine disrupting effects in polluted aquatic body
    corecore